题目内容

17.设a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx,则二项式(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中的常数项是120.

分析 求定积分得到a的值,再利用二项式定理把(2x-$\frac{1}{x}$)5 展开,可得(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中的常数项.

解答 解:∵a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx=lnx${|}_{1}^{{e}^{2}}$=2,则二项式(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5=(x+$\frac{2}{x}$)(2x-$\frac{1}{x}$)5
=(x+$\frac{2}{x}$)•(${C}_{5}^{0}$•(2x)5+${C}_{5}^{1}$•(2x)4•(-$\frac{1}{x}$)+${C}_{5}^{2}$•(2x)3•${(-\frac{1}{x})}^{2}$+${C}_{5}^{3}$•(2x)2•${(-\frac{1}{x})}^{3}$+${C}_{5}^{4}$•(2x)•${(-\frac{1}{x})}^{4}$+${C}_{5}^{5}$(-$\frac{1}{x}$)5
=(x+$\frac{2}{x}$)•(32x5-80x3+80x-40•$\frac{1}{x}$+10•$\frac{1}{{x}^{3}}$-$\frac{1}{{x}^{5}}$),
故展开式中的常数项为-40+2•80=120,
故答案为:120.

点评 本题主要考查定积分、二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网