ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔµãO£¬½¹µãÔÚXÖáÉÏ£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬MÊÇÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬¡÷MF1F2µÄÃæ»ýΪ4£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8
£®
£¨¢ñ£©Çó´ËÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôNÊÇ×ó±êÆ½ÃæÄÚÒ»¶¯µã£¬GÊÇ¡÷MF1F2µÄÖØÐÄ£¬ÇÒ
•
=0£¬Ç󶯵ãNµÄ¹ì¼£·½³Ì£»
£¨¢ó£©µãpÉó´ËÍÖÔ²ÉÏÒ»µã£¬µ«·Ç¶ÌÖá¶Ëµã£¬²¢ÇÒ¹ýP¿É×÷£¨¢ò£©ÖÐËùÇóµÃ¹ì¼£µÄÁ½Ìõ²»Í¬µÄÇÐÏߣ¬Q¡¢RÊÇÁ½¸öÇе㣬Çó
•
µÄ×îСֵ£®
| 2 |
£¨¢ñ£©Çó´ËÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôNÊÇ×ó±êÆ½ÃæÄÚÒ»¶¯µã£¬GÊÇ¡÷MF1F2µÄÖØÐÄ£¬ÇÒ
| GF2 |
| ON |
£¨¢ó£©µãpÉó´ËÍÖÔ²ÉÏÒ»µã£¬µ«·Ç¶ÌÖá¶Ëµã£¬²¢ÇÒ¹ýP¿É×÷£¨¢ò£©ÖÐËùÇóµÃ¹ì¼£µÄÁ½Ìõ²»Í¬µÄÇÐÏߣ¬Q¡¢RÊÇÁ½¸öÇе㣬Çó
| PQ |
| PR |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©Éè³öÍÖÔ²·½³Ì£¬ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃa£¬ÔÙÓÉÃæ»ý¹«Ê½£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÓÉÖØÐÄ×ø±ê¹«Ê½£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý×ø±ê¹«Ê½£¬¼´¿ÉµÃµ½¹ì¼£·½³Ì£»
£¨¢ó£©Åж϶¯µãNµÄ¹ì¼££¬ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃµ½|
|=|
|£¬¼°cos£¼
£¬
£¾£¬´Ó¶ø¸ù¾ÝÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå¼°¾ùÖµ²»µÈʽµÃ
•
µÄ×îСֵ£®
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÓÉÖØÐÄ×ø±ê¹«Ê½£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý×ø±ê¹«Ê½£¬¼´¿ÉµÃµ½¹ì¼£·½³Ì£»
£¨¢ó£©Åж϶¯µãNµÄ¹ì¼££¬ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃµ½|
| PQ |
| PR |
| PQ |
| PR |
| PQ |
| PR |
½â´ð£º
½â£º£¨¢ñ£©ÓÉÌâÒâÉèÍÖÔ²µÄ·½³ÌΪ
+
=1(a£¾b£¾0)£¬
ÒòΪMÊÇÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬
¡÷MF1F2µÄÃæ»ýΪ4£¬¡÷ABF2µÄÖܳ¤Îª8
£¬
ËùÒÔ 4a=8
£¬
•b•2c=4£¬
¡à
¡àb=c=2£¬a=2
£¬
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
+
=1£®
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÔòÓÉ£¨¢ñ£©µÃF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ËùÒÔG(
£¬
)£¬
´Ó¶ø
=(2-
£¬-
)£¬
=(x£¬y)£®ÒòΪ
•
=0£¬
ËùÒÔÓÐ(2-
£¬-
)•(x£¬y)=(2-
)x+(-
)y=0£¬¼´x2+y2-6x=0£¬
ÓÉÓÚGÊÇ¡÷NF1F2µÄÖØÐÄ£¬¼´N£¬F1£¬F2Ó¦µ±ÊÇÒ»¸öÈý½ÇÐεÄÈý¸ö¶¥µã£¬
Òò´ËËùÇ󶯵ãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª¶¯µãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£¬
¼´£¨x-3£©2+y2=9£¨y¡Ù0£©£®
ÏÔÈ»´Ë¹ì¼£ÊÇÒÔµãC£¨3£¬0£©£©ÎªÔ²ÐÄ£¬°ë¾¶r=3µÄÔ²
³ýÈ¥Á½µã£¨0£¬0£©£¬£¨6£¬0£©Ê£Óಿ·ÖµÄ²¿·ÖÇúÏߣ®
ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃ|
|=|
|=
=
£¬
cos£¼
£¬
£¾=cos2¡ÏQPC=1-2sin2¡ÏQPC=1-2•£¨
£©2=1-
£¬
´Ó¶ø¸ù¾ÝÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå¼°¾ùÖµ²»µÈʽµÃ£º
•
=|
|•|
|•cos£¼
£¬
£¾=[£¨m-3£©2+n2-9]•[1-
]
=[£¨m-3£©2+n2]+
-27¡Ý2
-27=18
-27£®
µ±ÇÒ½öµ±(m-3)2+n2=9
ʱ£¬È¡¡°=¡±£¨¡ù£©
ÓɵãP£¨m£¬n£©ÔÚÍÖÔ²
+
=1ÉÏ£¨·Ç¶ÌÖá¶Ëµã£©£¬²¢ÇÒÔÚÔ²£¨x-3£©2+y2=9Í⣬
¿ÉÖª3£¼|
|¡Ü3+2
µ«|
|¡Ù|
|=
⇒(m-3)2+n2¡Ê(9£¬13)¡È(13£¬17+12
]
ÓÉÓÚ9
¡Ê(9£¬13)£¬ËùÒÔÌõ¼þ£¨¡ù£©µÄÒªÇóÂú×㣮
Òò´Ë
•
µÄ×îСֵΪ18
-27£®
| x2 |
| a2 |
| y2 |
| b2 |
ÒòΪMÊÇÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµã£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬
¡÷MF1F2µÄÃæ»ýΪ4£¬¡÷ABF2µÄÖܳ¤Îª8
| 2 |
ËùÒÔ 4a=8
| 2 |
| 1 |
| 2 |
¡à
|
| 2 |
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
| x2 |
| 8 |
| y2 |
| 4 |
£¨¢ò£©ÉèN£¨x£¬y£©£¬ÔòÓÉ£¨¢ñ£©µÃF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ËùÒÔG(
| x |
| 3 |
| y |
| 3 |
´Ó¶ø
| GF2 |
| x |
| 3 |
| y |
| 3 |
| ON |
| GF2 |
| ON |
ËùÒÔÓÐ(2-
| x |
| 3 |
| y |
| 3 |
| x |
| 3 |
| y |
| 3 |
ÓÉÓÚGÊÇ¡÷NF1F2µÄÖØÐÄ£¬¼´N£¬F1£¬F2Ó¦µ±ÊÇÒ»¸öÈý½ÇÐεÄÈý¸ö¶¥µã£¬
Òò´ËËùÇ󶯵ãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£®
£¨¢ó£©ÓÉ£¨¢ò£©Öª¶¯µãNµÄ¹ì¼£·½³ÌΪx2+y2-6x=0£¨y¡Ù0£©£¬
¼´£¨x-3£©2+y2=9£¨y¡Ù0£©£®
ÏÔÈ»´Ë¹ì¼£ÊÇÒÔµãC£¨3£¬0£©£©ÎªÔ²ÐÄ£¬°ë¾¶r=3µÄÔ²
³ýÈ¥Á½µã£¨0£¬0£©£¬£¨6£¬0£©Ê£Óಿ·ÖµÄ²¿·ÖÇúÏߣ®
ÉèP£¨m£¬n£©£¬Ôò¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶµÃ|
| PQ |
| PR |
|
|
| (m-3)2+n2-9 |
cos£¼
| PQ |
| PR |
| r | ||
|
|
| 18 |
| (m-3)2+n2 |
´Ó¶ø¸ù¾ÝÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå¼°¾ùÖµ²»µÈʽµÃ£º
| PQ |
| PR |
| PQ |
| PR |
| PQ |
| PR |
| 18 |
| (m-3)2+n2 |
=[£¨m-3£©2+n2]+
| 162 |
| (m-3)2+n2 |
| 162 |
| 2 |
µ±ÇÒ½öµ±(m-3)2+n2=9
| 2 |
ÓɵãP£¨m£¬n£©ÔÚÍÖÔ²
| x2 |
| 8 |
| y2 |
| 4 |
¿ÉÖª3£¼|
| PC |
| 2 |
| PC |
| MC |
| 13 |
| 2 |
ÓÉÓÚ9
| 2 |
Òò´Ë
| PQ |
| PR |
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèiΪÐéÊýµ¥Î»£¬¸´Êý z1=3-ai£¬z2=1+2i£¬Èô
ÊÇ´¿ÐéÊý£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
| z1 |
| z2 |
A¡¢-
| ||
B¡¢
| ||
| C¡¢-6 | ||
| D¡¢6 |