题目内容

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作垂直于渐近线的直线与双曲线的两支都相交,则双曲线的离心率的取值范围是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:双曲线的离心率与渐近线的斜率有关,只有b>a时,即该渐近线倾斜角大于45°时,才可能与双曲线另一支相交,由此能求出双曲线离心率的范围.
解答: 解:双曲线的离心率与渐近线的斜率有关,
当b<a时,即该渐近线倾斜角小于45°时,
该渐近线的垂线不可能与双曲线另一支相交,而交点在同一右支上,
当a=b时,该渐近线倾斜角等于45°时,
该渐近线的垂线与另一条渐近线平行,也不可能与双曲线另一支相交,
只有b>a时,即该渐近线倾斜角大于45°时,才可能与双曲线另一支相交,
∴双曲线离心率e=
c
a
=
a2+b2
a

∵b>a,∴e>
2
a
a
=
2

∴e∈(
2
,+∞).
故答案为:(
2
,+∞).
点评:本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要注意双曲线的渐近线的斜率的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网