题目内容
已知z、w、x为复数,且x=(1+3i)•z,w=
且|w|=5
.
(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.
| z |
| 2+i |
| 2 |
(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.
(1)∵x=(1+3i)•z,∴z=
.
若w为大于0的实数,
∵w=
=
=
,|w|=5
,
则有 5
=
,∴x=-5
+35
i.
(2)若x为纯虚数,设x=bi,b≠0.
由(1)可得 |
|=|
|=5
,∴b=±50.
∴w=
=
=7-i,或w=
=
=-7+i.
| x |
| 1+3i |
若w为大于0的实数,
∵w=
| z |
| 2+i |
| x |
| (1+3i)(2+i) |
| x |
| -1+7i |
| 2 |
则有 5
| 2 |
| x |
| -1+7i |
| 2 |
| 2 |
(2)若x为纯虚数,设x=bi,b≠0.
由(1)可得 |
| x |
| -1+7i |
| bi |
| -1+7i |
| 2 |
∴w=
| x |
| -1+7i |
| 50i |
| -1+7i |
| x |
| -1+7i |
| -50i |
| -1+7i |
练习册系列答案
相关题目