题目内容

7.若直线x+y+m=0上存在点P可作圆O:x2+y2=1的两条切线PA、PB,切点为A、B,且∠APB=60°,则实数m的取值范围为$[-2\sqrt{2},2\sqrt{2}]$.

分析 当PO和直线x+y+m=0垂直时,∠APB的最大值为60°,此时∠APO=30°,PO=2r=2,从而圆心O到直线x+y+m=0的距离小于等于2,再利用点到直线的距离公式求得实数m的取值范围.

解答 解:由题意可得,当PO和直线x+y+m=0垂直时,∠APB的最大值为60°,此时∠APO=30°,PO=2r=2,
则圆心O到直线x+y+m=0的距离小于等于2,即$\frac{|m|}{\sqrt{2}}$≤2,解得m∈$[-2\sqrt{2},2\sqrt{2}]$,
故答案为$[-2\sqrt{2},2\sqrt{2}]$.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网