题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆短轴的一个端点与两个焦点构成的三角形面积为
3

(1)求椭圆的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
考点:直线与圆锥曲线的综合问题
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)由离心率公式和三角形的面积公式及a,b,c的关系式,即可得到方程,解出即可得到椭圆方程;
(2)由题意知直线PB的斜率存在,设方程为y=k(x-4)代入椭圆方程,利用韦达定理,表示出直线AE的方程,令y=0,化简即可得到结论
解答: (1)解:由题意得:
c
a
=
1
2
bc=
3
a2=b2+c2
,解之得:
a=2
b=
3
c=1

则椭圆的方程为:
x2
4
+
y2
3
=1;
(2)由题意知直线PB的斜率存在,
设方程为y=k(x-4)代入椭圆方程可得,
(4k2+3)x2-32k2x+64k2-12=0,
设B(x1,y1),E(x2,y2),则A(x1,-y1),
∴x1+x2=
32k2
4k2+3
,x1x2=
64k2-12
4k2+3

又直线AE的方程为y-y2=
y2+y1
x2-x1
(x-x2),
令y=0,则x=x2-
y2(x2-x1)
y2+y1
=
2x1x2-8(x1+x2)
x1+x2-8
=1,
故直线AE过x轴上一定点Q(1,0).
点评:本题考查椭圆的几何性质,考查椭圆的标准方程,解题的关键是确定几何量之间的关系,利用直线与椭圆联立,结合韦达定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网