题目内容
已知函数f(x)=|x|,则下列说法正确的是( )
| A、f(x)是奇函数,且在(0,+∞)上是增函数 |
| B、f(x)是奇函数,且在(0,+∞)上是减函数 |
| C、f(x)是偶函数,且在(0,+∞)上是增函数 |
| D、f(x)是偶函数,且在(0,+∞)上是减函数 |
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数单调性和奇偶性的定义直接判断即可.
解答:
解:∵f(x)=|x|=
,∴f(x)=f(-x),∴f(x)是偶函数,且在(0,+∞)上是增函数
故选:C
|
故选:C
点评:本题考查单调性和奇偶性的定义,属于基础题.
练习册系列答案
相关题目
已知函数h(x)=x2+px+q在(n,n+1)(n∈Z)有两个不同零点,令A=max{h(n),h(n+1)},B=min{h(n),h(n+1)},(其中max表示两个数中较大的,而min表示两个数中较小的),则( )
A、B<
| ||||
B、B>
| ||||
C、B<
| ||||
D、B>
|
| A、4π | ||
| B、π | ||
C、
| ||
D、
|
若θ∈[
,
],sin2θ=
,则sinθ=( )
| π |
| 4 |
| π |
| 2 |
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
定义在R上的函数f(x)满足:对任意α,β∈R,总有f(α+β)-[f(α)+f(β)]=2014,则下列说法正确的是( )
| A、f(x)+1是奇函数 |
| B、f(x)-1是奇函数 |
| C、f(x)+2014是奇函数 |
| D、f(x)-2014是奇函数 |