题目内容

13.一个盒子里装有6张卡片,其中红色卡片4张,编号分别为3,6,8,9;蓝色卡片2张,编号分别为6,8,从盒子中任取3张卡片(假设取到任何一张卡片的可能性相同).
(Ⅰ)求取出的3张卡片中,含有编号为6的卡片的概率;
(Ⅱ)记X为取到的卡片中红色卡片的张数,求X的分布列和数学期望.

分析 (Ⅰ)取出的3张卡片中,利用互斥事件概率计算公式能求出含有编号为6的卡片的概率.
(Ⅱ)由题意取到红色卡片的张数X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(Ⅰ)取出的3张卡片中,含有编号为6的卡片的概率:
p=$\frac{{C}_{2}^{2}{C}_{4}^{1}+{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{4}{5}$.
(Ⅱ)由题意取到红色卡片的张数X的可能取值为1,2,3,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{4}^{3}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴X的分布列为:

 X 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
EX=$1×\frac{1}{5}+2×\frac{3}{5}+3×\frac{1}{5}$=2.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网