题目内容
2.在等差数列{an}的前n项和为Sn,若a1+a2+a3=9,a4+a5+a6=27,求a7+a8+a9.分析 由等差数列的性质可得:2(a4+a5+a6)=a1+a2+a3+a7+a8+a9.即可得出.
解答 解:由等差数列的性质可得:2(a4+a5+a6)=a1+a2+a3+a7+a8+a9.
∴a7+a8+a9=2×27-9=45.
点评 本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.设复数z满足$\frac{2}{z}$=1+i,则z=( )
| A. | 1+i | B. | 1-i | C. | 2i | D. | -2i |
7.函数f(x)=x3-2x2+x+4在(-2,0)内是( )
| A. | 减函数 | |
| B. | 增函数 | |
| C. | 在(-2,-1)内为增函数.在(-1,0)内为减函数 | |
| D. | 以上都不对 |
12.若$cos(π-α)=\frac{1}{3}且α为第二象限的角,则tan2α$的值为( )
| A. | $\frac{{7\sqrt{2}}}{2}$ | B. | $-\frac{{7\sqrt{2}}}{2}$ | C. | $\frac{{4\sqrt{2}}}{7}$ | D. | $-\frac{{4\sqrt{2}}}{7}$ |