ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªOÎª×ø±êԵ㣬$\overrightarrow{a}$=£¨-1£¬1£©£¬$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$£¬$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$£¬µ±¡÷AOBΪµÈ±ßÈý½ÇÐÎʱ£¬|$\overrightarrow{AB}$|µÄÖµÊÇ£¨¡¡¡¡£©| A£® | $\frac{2\sqrt{6}}{9}$ | B£® | $\frac{4\sqrt{2}}{9}$ | C£® | $\frac{2\sqrt{6}}{3}$ | D£® | $\frac{8}{3}$ |
·ÖÎö Éè³ö$\overrightarrow{b}$=£¨x£¬y£©£¬ÀûÓÃ×ø±ê±íʾ³ö$\overrightarrow{OA}$¡¢$\overrightarrow{OB}$£¬µ±¡÷AOBΪµÈ±ßÈý½ÇÐÎʱ£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|£¬ÀûÓÃÄ£³¤¹«Ê½Çó³öx¡¢yµÄÖµ£¬¼´¿É¼ÆËã|$\overrightarrow{AB}$|µÄÖµ£®
½â´ð ½â£ºÉè$\overrightarrow{b}$=£¨x£¬y£©£¬
¡ß$\overrightarrow{a}$=£¨-1£¬1£©£¬
¡à$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$=£¨-1-x£¬1-y£©£¬
$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$=£¨-1+x£¬1+y£©£»
µ±¡÷AOBΪµÈ±ßÈý½ÇÐÎʱ£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|£¬
¼´$\sqrt{{£¨-1-x£©}^{2}{+£¨1-y£©}^{2}}$=$\sqrt{{£¨-1+x£©}^{2}{+£¨1+y£©}^{2}}$£¬
»¯¼òµÃx=y¢Ù£»
ÓÖ|$\overrightarrow{AB}$|=|$\overrightarrow{OB}$-$\overrightarrow{OA}$|=2|$\overrightarrow{b}$|£¬ÇÒ|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|£¬
¡à$\sqrt{{£¨-1-x£©}^{2}{+£¨1-y£©}^{2}}$=2$\sqrt{{x}^{2}{+y}^{2}}$¢Ú£»
°Ñ¢Ù´úÈË¢Ú£¬½âµÃx2=y2=$\frac{1}{3}$£¬
¡à|$\overrightarrow{b}$|=$\sqrt{{x}^{2}{+y}^{2}}$=$\sqrt{\frac{1}{3}+\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$£¬
¡à|$\overrightarrow{AB}$|=2|$\overrightarrow{b}$|=$\frac{2\sqrt{6}}{3}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄ×ø±ê±íʾÓëÔËËãÎÊÌ⣬Ҳ¿¼²éÁËÏòÁ¿Ä£³¤µÄ¼ÆËãÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | ÎÞ½â | B£® | Ò»½â | C£® | Á½½â | D£® | ²»ÄÜÈ·¶¨ |
| A£® | £¨-¡Þ£¬-1] | B£® | [1£¬+¡Þ£© | C£® | £¨-¡Þ£¬1] | D£® | ÒÔÉ϶¼²»ÕýÈ· |