题目内容

已知平面向量
a
=(
3
,2cosx),
b
=(sin2x,cosx),f(x)=
a
b
,x∈[0,
π
2
].
(1)求f(x)的最小值;
(2)求f(x)的单调增区间.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值,三角函数的图像与性质,平面向量及应用
分析:(1)利用两个向量的数量积公式,两角和的正弦公式,化简f(x) 的 解析式为2sin(2x+
π
6
)+1,由x∈[0,
π
2
],求出f(x)的最小值;
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z,可解得:kπ-
π
3
≤x≤kπ+
π
6
,k∈Z.
解答: 解:(1)∵平面向量
a
=(
3
,2cosx),
b
=(sin2x,cosx),f(x)=
a
b

∴f(x)=
a
b
=
3
sin2x+2cos2x=2sin(2x+
π
6
)+1,
∵x∈[0,
π
2
],∴2x+
π
6
∈[
π
6
6
],
∴f(x)min=2×(-
1
2
)+1=0.
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z,可解得:kπ-
π
3
≤x≤kπ+
π
6
,k∈Z
故求f(x)的单调增区间为:[kπ-
π
3
,kπ+
π
6
],k∈Z.
点评:本题主要考察了平面向量数量积的运算,三角函数中的恒等变换应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网