ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒa1=1£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¾ùÓÐan+12-1=4an£¨an+1£©£¬bn=2log2£¨1+an£©-1£®£¨1£©ÇóÖ¤£º{1+an}ÊǵȱÈÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}ÖÐÈ¥µô{an}µÄÏîºó£¬ÓàϵÄÏî×é³ÉÊýÁÐ{cn}£¬Çóc1+c2+¡+c100£»
£¨3£©Éèdn=$\frac{1}{{b}_{n}•{b}_{n+1}}$£¬ÊýÁÐ{dn}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¨1£¼m£¼n£©£¬Ê¹µÃT1¡¢Tm¡¢Tn³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¶ÔÈÎÒâµÄn¡ÊN*£¬¾ùÓÐan+12-1=4an£¨an+1£©£¬¿ÉµÃan+12=$£¨2{a}_{n}+1£©^{2}$£¬ÓÖÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬
¿ÉµÃan+1=2an+1£¬±äÐÎΪan+1+1=2£¨an+1£©£¬¼´¿ÉÖ¤Ã÷£®
£¨2£©bn=2log2£¨1+an£©-1=2n-1£®ÓÉn=7ʱ£¬a7=127£»n=8ʱ£¬a8=255£¾213=b107£®¿ÉµÃc1+c2+¡+c100=b1+b2+¡+b106+b107£¨a1+¡+a6+a7£©¼´¿ÉµÃ³ö£®
£¨3£©dn=$\frac{1}{{b}_{n}•{b}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}£¨\frac{1}{2n-1}-\frac{1}{2n+1}£©$£¬¿ÉµÃÊýÁÐ{dn}µÄǰnÏîºÍΪTn=$\frac{n}{2n+1}$£®¼ÙÉè´æÔÚÕýÕûÊým£¨1£¼m£¼n£©£¬Ê¹µÃT1¡¢Tm¡¢Tn³ÉµÈ±ÈÊýÁУ¬Ôò${T}_{m}^{2}$=T1Tn£¬¼´$£¨\frac{m}{2m+1}£©^{2}$=$\frac{1}{3}¡Á$$\frac{n}{2n+1}$£¬¼´$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$£¾0£¬½â³ö¼´¿ÉÅжϳö½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£º¡ß¶ÔÈÎÒâµÄn¡ÊN*£¬¾ùÓÐan+12-1=4an£¨an+1£©£¬
¡àan+12=$£¨2{a}_{n}+1£©^{2}$£¬ÓÖÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬
¡àan+1=2an+1£¬±äÐÎΪan+1+1=2£¨an+1£©£¬
¡à{1+an}ÊǵȱÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪ2£¬
¡à1+an=2n£¬¼´an=2n-1£®
£¨2£©½â£ºbn=2log2£¨1+an£©-1=2n-1£®
¡ßn=7ʱ£¬a7=127£»n=8ʱ£¬a8=255£¾213=b107£®
¡àc1+c2+¡+c100=b1+b2+¡+b106+b107£¨a1+¡+a6+a7£©
=$\frac{107¡Á£¨1+2¡Á107-1£©}{2}$-$\frac{2¡Á£¨{2}^{7}-1£©}{2-1}$+7
=11449-256+9=11202£®
£¨3£©½â£ºdn=$\frac{1}{{b}_{n}•{b}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}£¨\frac{1}{2n-1}-\frac{1}{2n+1}£©$£¬
¡àÊýÁÐ{dn}µÄǰnÏîºÍΪTn=$\frac{1}{2}[£¨1-\frac{1}{3}£©+£¨\frac{1}{3}-\frac{1}{5}£©$+¡+$£¨\frac{1}{2n-1}-\frac{1}{2n+1}£©]$
=$\frac{1}{2}£¨1-\frac{1}{2n+1}£©$
=$\frac{n}{2n+1}$£®
¼ÙÉè´æÔÚÕýÕûÊým£¨1£¼m£¼n£©£¬Ê¹µÃT1¡¢Tm¡¢Tn³ÉµÈ±ÈÊýÁУ¬
Ôò${T}_{m}^{2}$=T1Tn£¬¼´$£¨\frac{m}{2m+1}£©^{2}$=$\frac{1}{3}¡Á$$\frac{n}{2n+1}$£¬
¼´$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$£¾0£¬
¼´2m2-4m-1£¼0£¬½âµÃ1-$\frac{\sqrt{6}}{2}$£¼m£¼1+$\frac{\sqrt{6}}{2}$£®
¡ßmÊÇÕýÕûÊýÇÒm£¾1£¬
¡àm=2£¬´Ëʱn=12µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬T1¡¢Tm¡¢Tn³ÉµÈ±ÈÊýÁУ®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÇóºÍ¹«Ê½¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢²»µÈʽµÄ½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | $\frac{3¦Ð}{4}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{¦Ð}{4}$ | D£® | 0 |
| A£® | $£¨\frac{{{e^2}+1}}{e}£¬+¡Þ£©$ | B£® | $£¨-¡Þ£¬-\frac{{{e^2}+1}}{e}£©$ | C£® | $£¨-\frac{{{e^2}+1}}{e}£¬-2£©$ | D£® | $£¨2£¬\frac{{{e^2}+1}}{e}£©$ |
| A£® | 6 | B£® | 8 | C£® | 9 | D£® | 5 |