题目内容
考点:余弦定理的应用
专题:计算题,解三角形
分析:利用三角形的中位线定理分别得到所求的四边形的各边长,根据平行四边形对角线的平方和等于四边的平方和,可得答案.
解答:
解:∵点E,F,G,H分别为三棱锥A-BCD的棱AB,BC,CD,DA的中点,
∴HG、GF、FE、EH分别为△ADC、△BDC、△ABC、△ABD的中位线.
∴GF=HE=
BD=
;HG=EF=
AC=
,
EG2+FH2=GF2+FH2+EG2+HE2=1.
故答案为:1.
∴HG、GF、FE、EH分别为△ADC、△BDC、△ABC、△ABD的中位线.
∴GF=HE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
EG2+FH2=GF2+FH2+EG2+HE2=1.
故答案为:1.
点评:角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题解题的关键是将四边形分为四个三角形,然后利用中位线定理解答
练习册系列答案
相关题目
对下面三件事:
①科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈;
②某班数学成绩有15人在120分以上,40人在90~119分之间,1人不及格,现从中抽出8人研讨,进一步改进教与学;
③某中学的15名艺术特长生中选出3人调查学习负担情况.
所采用的抽样方法依次为( )
①科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈;
②某班数学成绩有15人在120分以上,40人在90~119分之间,1人不及格,现从中抽出8人研讨,进一步改进教与学;
③某中学的15名艺术特长生中选出3人调查学习负担情况.
所采用的抽样方法依次为( )
| A、简单随机抽样,分层抽样,简单随机抽样 |
| B、系统抽样,系统抽样,简单随机抽样 |
| C、分层抽样,简单随机抽样,简单随机抽样 |
| D、系统抽样,分层抽样,简单随机抽样 |