题目内容

2.已知f(x)=log(1-2cosx)(2sinx+1)的定义域为{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.

分析 由对数式的真数大于零,底数大于零且不等于1联立不等式组求得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{2sinx+1>0}\\{1-2cosx>0}\\{1-2cosx≠1}\end{array}\right.$,
由2sinx+1>0,得$-\frac{π}{6}+2kπ<x<\frac{7π}{6}+2kπ,k∈Z$;
由1-2cosx>0,得$\frac{π}{3}+2kπ<x<\frac{5π}{3}+2kπ,k∈Z$;
由1-2cosx≠1,得x$≠\frac{π}{2}+kπ,k∈Z$.
取交集得:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.
故答案为:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.

点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网