题目内容

已知:an=logn+1(n+2)(n∈N*),观察下列运算:a1a2=lo
g
3
2
•lo
g
4
3
=
lg3
lg2
lg4
lg3
=2
a1a2a3a4a5a6=lo
g
3
2
•lo
g
4
3
•…•lo
g
7
6
•lo
g
8
7
=
lg3
lg2
lg4
lg3
•…•
lg7
lg6
lg8
lg7
=3
则当a1•a2•…•ak=2012时,自然数k为(  )
分析:利用对数的运算性质,化简a1•a2•…•ak,即可求得结论.
解答:解:∵an=logn+1(n+2)(n∈N*)
∴a1•a2•…•ak=lo
g
3
2
•lo
g
4
3
•…•lo
g
7
6
•lo
g
(k+2)
(k+1)
=
lg3
lg2
lg4
lg3
•…•
lg7
lg6
lg(k+2)
lg(k+1)
=
lg(k+2)
lg2

∵a1•a2•…•ak=2012
lg(k+2)
lg2
=2012
∴k+2=22012
∴k=22012-2
故选C.
点评:本题考查类比推理,考查了对数的换底公式及对数的运算性质的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网