题目内容
已知:an=logn+1(n+2)(n∈N*),观察下列运算:a1•a2=lo
•lo
=
•
=2,a1•a2•a3•a4•a5•a6=lo
•lo
•…•lo
•lo
=
•
•…•
•
=3则当a1•a2•…•ak=2012时,自然数k为( )
| g | 3 2 |
| g | 4 3 |
| lg3 |
| lg2 |
| lg4 |
| lg3 |
| g | 3 2 |
| g | 4 3 |
| g | 7 6 |
| g | 8 7 |
| lg3 |
| lg2 |
| lg4 |
| lg3 |
| lg7 |
| lg6 |
| lg8 |
| lg7 |
分析:利用对数的运算性质,化简a1•a2•…•ak,即可求得结论.
解答:解:∵an=logn+1(n+2)(n∈N*),
∴a1•a2•…•ak=lo
•lo
•…•lo
•lo
=
•
•…•
•
=
∵a1•a2•…•ak=2012
∴
=2012
∴k+2=22012
∴k=22012-2
故选C.
∴a1•a2•…•ak=lo
| g | 3 2 |
| g | 4 3 |
| g | 7 6 |
| g | (k+2) (k+1) |
| lg3 |
| lg2 |
| lg4 |
| lg3 |
| lg7 |
| lg6 |
| lg(k+2) |
| lg(k+1) |
| lg(k+2) |
| lg2 |
∵a1•a2•…•ak=2012
∴
| lg(k+2) |
| lg2 |
∴k+2=22012
∴k=22012-2
故选C.
点评:本题考查类比推理,考查了对数的换底公式及对数的运算性质的应用,属于中档题.
练习册系列答案
相关题目