题目内容

已知an=logn+1(n+2)(n∈N*),观察下列运算a1•a2=log23•log34=
lg3
lg2
lg4
lg3
=2,
a1•a2•a3•a4•a5•a6=log23•log34•…•log67•log78=
lg3
lg2
lg4
lg3
•…•
lg7
lg6
lg8
lg7
=3.

定义使a1•a2•a3•…•ak为整数的k(k∈N*)叫做企盼数.试确定当a1•a2•a3•…•ak=2008时,企盼数k=
 
分析:由题意知a1•a2•…•ak=
lg3
lg2
lg4
lg3
lg5
lg4
••
lg(k+2)
lg(k+1)
=2008,由此解可得答案.
解答:解:由a1•a2••ak=
lg3
lg2
lg4
lg3
lg5
lg4
••
lg(k+2)
lg(k+1)

=
lg(k+2)
lg2

=log2(k+2)
=2008,
解之得k=22008-2.
答案:22008-2
点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网