题目内容
数列{an}满足a1=1,且an=an-1+n(n>1,n∈N*),
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=
,求数列{bn}的前n项的和Sn.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=
| 1 |
| an |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得an-an-1=n,由此利用叠加法能求出an=
.
(2)由bn=
=2(
-
),利用裂项求和法能求出数列{bn}的前n项的和Sn.
| n(n+1) |
| 2 |
(2)由bn=
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(1)∵an=an-1+n(n>1,n∈N*),
∴an-an-1=n,
由叠加得:
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+…+n=
(n>2),
当n=1时,上式的值为1,满足条件a1=1,
∴an=
(2)∵数列{bn}满足bn=
,
∴bn=
=2(
-
),
∴Sn=2(1-
+
-
+…+
-
)=
.
∴an-an-1=n,
由叠加得:
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+…+n=
| n(n+1) |
| 2 |
当n=1时,上式的值为1,满足条件a1=1,
∴an=
| n(n+1) |
| 2 |
(2)∵数列{bn}满足bn=
| 1 |
| an |
∴bn=
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目