题目内容

给定两个长度为1的平面向量
OA
OB
,它们的夹角为
3
.如图所示,点C在以O为圆心的圆弧
AB
上运动.若
OC
=x
OA
+y
OB
,其中x,y∈R,求x+y的最大值.
考点:平面向量的基本定理及其意义
专题:计算题,平面向量及应用
分析:
OC
=x
OA
+y
OB
,两边平方并根据已知条件可得到:x2-xy+y2=(x+y)2-3xy=1,所以(x+y)2-1=3xy,因为根据向量加法的平行四边形法则可知,x,y>0,所以xy≤
(x+y)2
4
,所以(x+y)2-1≤
3
4
(x+y)2,所以得到x+y≤2,所以x+y的最大值是2.
解答: 解:由已知条件知:
OC
2
=1=(x
OA
+y
OB
2=x2-xy+y2=(x+y)2-3xy;
∴(x+y)2-1=3xy,根据向量加法的平行四边形法则,容易判断出x,y>0,
∴x+y≥2
xy
,∴xy≤
(x+y)2
4

∴(x+y)2-1≤
3
4
(x+y)2,∴(x+y)2≤4,∴x+y≤2,即x+y的最大值为2.
点评:考查向量数量积的运算及计算公式,向量加法的平行四边形法则,基本不等式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网