题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)右焦点为F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率的取值范围为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:首先根据点F在AP的垂直平分线上,可得|PF|=|FA|;然后求出|FA|=
b2
c
,|PF|∈[a-c,a+c],所以
b2
c
∈[a-c,a+c],从而求出椭圆的离心率的取值范围即可.
解答: 解:因为在椭圆上存在点P满足线段AP的垂直平分线过点F,
所以F点到P点与A点的距离相等;
因为|FA|=
a2
c
-c
=
b2
c
,|PF|∈[a-c,a+c],
所以
b2
c
∈[a-c,a+c],
可得ac-c2≤b2≤ac+c2
即ac-c2≤a2-c2≤ac+c2
解得
c
a
≤1
c
a
≤-1或
c
a
1
2

1
2
≤e<1

所以椭圆的离心率的取值范围为[
1
2
,1)

故答案为:[
1
2
,1)
点评:本题主要考查了椭圆的基本性质的运用,属于基础题,解答此题的关键是根据题意,判断出|PF|=|FA|.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网