题目内容
16.已知a2-3a+1=0,求(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)].分析 化简可得a-3+a-1=0,再化简(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)]=a+a-1=3.
解答 解:∵a2-3a+1=0,
∴a≠0且a-3+a-1=0,
∴(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)]
=(a6-a-6)÷[(a4+a-4+1)(a-a-1)(a+a-1)÷(a+a-1)]
=(a6-a-6)÷[(a4+a-4+1)(a2-a-2)÷(a+a-1)]
=(a6-a-6)÷[(a6-a-6)÷(a+a-1)]
=a+a-1=3.
点评 本题考查了学生的化简运算能力及整体思想的应用.
练习册系列答案
相关题目
4.已知实数x,y满足约束条件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,则z=2x+y的最小值是( )
| A. | -2$\sqrt{5}$ | B. | 2 | C. | 2$\sqrt{5}$ | D. | 1 |