题目内容
20.在下列各组函数中,两个函数相等的是( )| A. | f(x)=$\root{3}{x^3}$与g(x)=$\root{4}{x^4}$ | |
| B. | f(x)=$\sqrt{{x^2}-1}$与g(x)=$\sqrt{x-1}•\sqrt{x+1}$ | |
| C. | f(x)=2x,x∈{0,1,2,3}与g(x)=$\frac{x^3}{6}+\frac{5}{6}x+1,x∈\left\{{0,1,2,3}\right\}$ | |
| D. | f(x)=|x|与g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}$ |
分析 根据两个函数的对应关系相同,定义域也相同,即可判断这两个函数是相等的函数.
解答 解:对于A,f(x)=$\root{3}{{x}^{3}}$=x的定义域是R,g(x)=$\root{4}{{x}^{4}}$=|x|的定义域是R,但对应关系不同,所以两个函数不相等;
对于B,y=$\sqrt{{x}^{2}-1}$=$\sqrt{(x+1)(x-1)}$的定义域是(-∞,-1]∪[1,+∞),
g(x)=$\sqrt{x-1}$•$\sqrt{x+1}$=$\sqrt{(x+1)(x-1)}$的定义域是[1,+∞),定义域不同,所以这两个函数不相等;
对于C,x∈{0,1,2,3}时,f(x)=2x={1,2,4,8},
g(x)=$\frac{{x}^{3}}{6}$+$\frac{5}{6}$x+1={1,2,4,7},所以这两个函数不是相等的函数;
对于D,f(x)=|x|=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,两个函数的定义域相同,对应关系也相同,所以是相等函数.
故选:D.
点评 本题考查了函数的定义域和对应法则应用问题,根据函数的对应法则和定义域就可确定一个函数,是基础题目.
练习册系列答案
相关题目
11.若存在实数k和b,使得函数f(x)和g(x)对定义域内的任意x均满足:[f(x)-(kx+b)][g(x)-(kx+b)]≤0,且存在x1使得f(x1)-(kx1+b)=0,存在x2使得g(x2)-(kx2+b)=0,则称直线l:y=kx+b为函数f(x)和g(x)的“分界线”.在下列说法中正确的是( )
| A. | 任意两个一次函数最多存在一条“分界线” | |
| B. | “分界线”存在的两个函数的图象最多只有两个交点 | |
| C. | f(x)=x2-2x与g(x)=-x2+4的“分界线”是y=-x+2 | |
| D. | f(x)=x2与g(x)=-(x-1)2的“分界线”是y=0或$y=x-\frac{1}{2}$ |
8.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当其中有两个数字的和等于第三个数字时称为“有缘数”(如213,341等).若a,b,c∈{1,2,3,4},且a,b,c互不相同,任取一个三位自然数,则它是“有缘数”的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
5.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…xn总满足$\frac{1}{n}$[f(x1)+f(x2)+…+f(xn)]≤f($\frac{{x}_{1}{+x}_{2}+…{+x}_{n}}{n}$),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3 |