题目内容

函数y=logax在[2,+∞)上恒有|y|>1,则实数a的取值范围是(  )
A.(
1
2
,1)∪(1,2)
B.(0,
1
2
)∪(1,2)
C.(1,2)D.(0,
1
2
)∪(2,+∞)
由题意可得,当x≥2时,|logax|>1 恒成立.
若a>1,函数y=logax 是增函数,不等式|logax|>1 即 logax>1,
∴loga2>1=logaa,解得 1<a<2.
若 1>a>0,函数y=logax 是减函数,函数y=log 
1
a
x 是增函数,
不等式|logax|>1 即 log 
1
a
x>1.
∴有log 
1
a
2>1=log 
1
a
1
a

得 1<
1
a
<2,解得
1
2
<a<1.
综上可得,实数a的取值范围是 (
1
2
,1)∪(1,2),
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网