题目内容
设f(x)=
x2+
x-
,正数数列{an}的前n项和为Sn,且Sn=f(an),(n∈N*).
(1)求数列{an}的通项公式;
(2)若a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切n∈N*都成立,求{bn}的通项.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
(1)求数列{an}的通项公式;
(2)若a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切n∈N*都成立,求{bn}的通项.
考点:数列的求和,数列的应用
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=
an2+
an-
,所以当n≥2时,an=Sn-Sn-1=
an2+
an-
an-12-
an-1,从而得an-an-1=2(n≥2),由此能求出an=2n+1.
(2)由a1b1+a2b2+…+anbn=2n+1(2n-1)+2,得a1b1+a2b2+…+an-1bn-1=2n(2n-3)+2,两式相减得,anbn=(2n+1)•2n,由此能求出bn=2n.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
(2)由a1b1+a2b2+…+anbn=2n+1(2n-1)+2,得a1b1+a2b2+…+an-1bn-1=2n(2n-3)+2,两式相减得,anbn=(2n+1)•2n,由此能求出bn=2n.
解答:
解:(1)∵f(x)=
x2+
x-
,正数数列{an}的前n项和为Sn,且Sn=f(an),
∴Sn=
an2+
an-
,
∴当n≥2时,an=Sn-Sn-1=
an2+
an-
an-12-
an-1,
整理,得an-an-1=2(n≥2),
∵a1=S1=
a12+
a1-
,解得a1=3或a1=-1(舍)
∴数列{an}是以3为首项,2为公差的等差数列
∴an=2n+1.
(2)∵a1b1+a2b2+…+anbn=2n+1(2n-1)+2,
∴a1b1+a2b2+…+an-1bn-1=2n(2n-3)+2,
两式相减得,anbn=(2n+1)•2n,
∵an=2n+1,∴bn=2n.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴当n≥2时,an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
整理,得an-an-1=2(n≥2),
∵a1=S1=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴数列{an}是以3为首项,2为公差的等差数列
∴an=2n+1.
(2)∵a1b1+a2b2+…+anbn=2n+1(2n-1)+2,
∴a1b1+a2b2+…+an-1bn-1=2n(2n-3)+2,
两式相减得,anbn=(2n+1)•2n,
∵an=2n+1,∴bn=2n.
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意常规解法的灵活运用.
练习册系列答案
相关题目