题目内容
5.设三个各项均为正整数的无穷数列{an},{bn},{cn}.记数列{bn},{cn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有an=bn+cn,且Sn>Tn,则称数列{an}为可拆分数列.(1)若${a_n}={4^n}$,且数列{bn},{cn}均是公比不为1的等比数列,求证:数列{an}为可拆分数列;
(2)若an=5n,且数列{bn},{cn}均是公差不为0的等差数列,求所有满足条件的数列{bn},{cn}的通项公式;
(3)若数列{an},{bn},{cn}均是公比不为1的等比数列,且a1≥3,求证:数列{an}为可拆分数列.
分析 (1)利用等比数列通项公式求得Sn=$\frac{3(1-{4}^{n})}{1-4}$=4n-1,Tn=$\frac{1-{4}^{n}}{1-3}$=$\frac{{4}^{n}-1}{3}$,则an=bn+cn,且Sn>Tn,即可证明数列{an}为可拆分数列;
(2)由等差数列的通项公式转成$\left\{\begin{array}{l}{{d}_{1}+{d}_{2}=5}\\{{b}_{1}+{c}_{1}=5}\end{array}\right.$,由Sn>Tn,利用等差数前n项和公式即可求得d1≥d2且b1>c1,且d1>d2,即可求得d1,d2,及c1,b1求得数列{bn},{cn}的通项公式;
(3)q为无理数时,a2=a1q为无理数,与an∈N+,矛盾,q为有理数,可得,q=$\frac{b}{a}$=b∈N*,则q∈N+,q≥2,an=a1qn-1=(a1-1)qn-1+qn-1,令bn=(a1-1)qn-1,cn=qn-1,且Sn>Tn,数列{an}为可拆分数列.
解答 解:(1)证明:由${a_n}={4^n}$=4×4n-1=3×4n-1+3×4n-1,bn=3×4n-1,cn=3×4n-1,
则Sn=$\frac{3(1-{4}^{n})}{1-4}$=4n-1,Tn=$\frac{1-{4}^{n}}{1-3}$=$\frac{{4}^{n}-1}{3}$,
∴对任意的n∈N*,都有an=bn+cn,且Sn>Tn,
∴数列{an}为可拆分数列; …(3分)
(2)设数列{bn},{cn}的公差分别为d1,d2,
由an=5n,得b1+(n-1)d1+c1+(n-1)d2=(d1+d2)n+b1+c1-d1-d2=5n,对任意的n∈N*都成立.
∴$\left\{\begin{array}{l}{{d}_{1}+{d}_{2}=5}\\{{b}_{1}+{c}_{1}-{d}_{1}-{d}_{2}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{{d}_{1}+{d}_{2}=5}\\{{b}_{1}+{c}_{1}=5}\end{array}\right.$①…(5分)
由Sn>Tn,得nb1+$\frac{n(n-1)}{2}$d1>nc2+$\frac{n(n-1)}{2}$d2,则($\frac{{d}_{1}}{2}$-$\frac{{d}_{2}}{2}$)n2+(b1-c1-$\frac{{d}_{1}}{2}$+$\frac{{d}_{2}}{2}$)n>0,
由n>0,得($\frac{{d}_{1}}{2}$-$\frac{{d}_{2}}{2}$)n+(b1-c1-$\frac{{d}_{1}}{2}$+$\frac{{d}_{2}}{2}$)>0,对任意的n∈N*成立.
则$\frac{{d}_{1}}{2}$-$\frac{{d}_{2}}{2}$≥0且($\frac{{d}_{1}}{2}$-$\frac{{d}_{2}}{2}$)n+(b1-c1-$\frac{{d}_{1}}{2}$+$\frac{{d}_{2}}{2}$)>0,即d1≥d2且b1>c1②
由数列数列{bn},{cn}各项均为正整数,则b1,c1,d1,d2均为正整数
当d1=d2时,由d1+d2=5,得d1=d2=$\frac{5}{2}$∉N*不符;
∴d1>d2③…(7分)
由①②③,得$\left\{\begin{array}{l}{{d}_{1}=4}&{{d}_{2}=1}\\{{b}_{1}=4}&{{c}_{1}=1}\end{array}\right.$或$\left\{\begin{array}{l}{{d}_{1}=4}&{{d}_{2}=1}\\{{b}_{1}=3}&{{c}_{1}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{d}_{1}=3}&{{d}_{2}=2}\\{{b}_{1}=4}&{{c}_{1}=1}\end{array}\right.$或$\left\{\begin{array}{l}{{d}_{1}=3}&{{d}_{2}=2}\\{{b}_{1}=3}&{{c}_{1}=2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{b}_{n}=4n}\\{{c}_{n}=n}\end{array}\right.$或$\left\{\begin{array}{l}{{b}_{n}=4n-1}\\{{c}_{n}=n+1}\end{array}\right.$或$\left\{\begin{array}{l}{{b}_{n}=3n+1}\\{{c}_{n}=2n-1}\end{array}\right.$或$\left\{\begin{array}{l}{{b}_{n}=3n}\\{{c}_{n}=2n}\end{array}\right.$;.…(9分)
(3)证明:设an=a1qn-1,a1∈N+,q>0,q≠1,下面证明:q∈N+,q≥2,
当q为无理数时,a2=a1q为无理数,与an∈N+,矛盾.
故q为有理数,设q=$\frac{b}{a}$(a,b为正整数,且a,b互素).…(11分)
此时an=a1•$\frac{{b}^{n-1}}{{a}^{n-1}}$.则对任意的n∈N*,an-1均为a1的约数,则an-1=1,即a=1,
故q=$\frac{b}{a}$=b∈N*,则q∈N+,q≥2,…(14分)
∴an=a1qn-1=(a1-1)qn-1+qn-1,令bn=(a1-1)qn-1,cn=qn-1,
则{bn},{cn}各项均为正整数.
由a1≥3,则a1-≥2>1则Sn>Tn,
所以,数列{an}为可拆分数列.…(16分)
点评 本题为新定义题,考查阅读理解能力;考查一般与特殊思想、转化与化归思想;考查运算能力;考查分析探究推理能力,属于难题.
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
| A. | Sn=n2-n | B. | Sn=n2-2n | C. | Sn=n2+n | D. | Sn=n2+2n |
| x | $-\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
| f(x) | 0 | 2 | 0 | -2 | 0 |
(Ⅱ) 求函数f(x)在区间$[0,\frac{π}{2}]$上的取值范围.
| A. | 2016 | B. | 2017 | C. | 2018 | D. | 2019 |
| A. | y2-x2=1(y<0) | B. | (y+2)2+x2=1 | C. | ${x^2}+\frac{y^2}{4}=1(y<0)$ | D. | x2=-y-1 |
| A. | 如果A⊆B,那么A∩B=A | B. | 如果A∩B=A,那么(∁UA)∩B=∅ | ||
| C. | 如果A⊆B,那么A∪B=A | D. | 如果A∪B=A,那么A⊆B |