题目内容
20.已知等比数列{an}满足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$.(1)求an;
(2)若{bn}满足bn=log2(16•an),求证$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和${S_n}<\frac{1}{2}$.
分析 (1)由等比数列通项公式得${a_3}{a_5}={a_4}^2=4({{a_4}-1})$,求出a4=2,进而得到公式q=2,由此能求出an.
(2)由${b_n}={log_2}({16{a_n}})={log_2}{2^{n+1}}=n+1$,得$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$.由此利用裂项求和法能证明$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和${S_n}<\frac{1}{2}$.
解答 解:(1)∵等比数列{an}满足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$.
∴${a_3}{a_5}={a_4}^2=4({{a_4}-1})$,
解得a4=2,
∴$\frac{{a}_{4}}{{a}_{1}}={q}^{3}$=8,解得q=2,
∴${a}_{n}=\frac{1}{4}×{2}^{n-1}$=2n-3.
(2)证明:${b_n}={log_2}({16{a_n}})={log_2}{2^{n+1}}=n+1$,
∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$.
∴${S_n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}…\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}-\frac{1}{n+2}<\frac{1}{2}$.
∴$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和${S_n}<\frac{1}{2}$.
点评 本题考查数列的通项的求法,考查数列的前n项和小于$\frac{1}{2}$的证明,考查等比数列、裂项求和法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
| A. | $({-\frac{1}{3}ln6,ln2}]$ | B. | $({-ln2,-\frac{1}{3}ln6})$ | C. | $({-ln2,-\frac{1}{3}ln6}]$ | D. | $({-\frac{1}{3}ln6,ln2})$ |
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
| A. | B. | C. | D. |