题目内容

20.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),且mn=$\frac{2}{9}$,则该双曲线的离心率为$\frac{{3\sqrt{2}}}{4}$.

分析 求出A、C坐标,然后求出P的坐标,代入双曲线方程,利用mn=$\frac{2}{9}$,即可求出双曲线的离心率.

解答 解:由题意可知A(c,$\frac{bc}{a}$),B(c,-$\frac{bc}{a}$),
代入$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=((m+n)c,(m-n)$\frac{bc}{a}$),
得P((m+n)c,(m-n)$\frac{bc}{a}$),代入双曲线方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
整理可得4e2mn=1,
因为mn=$\frac{2}{9}$,
所以可得e=$\frac{{3\sqrt{2}}}{4}$.
故答案为$\frac{{3\sqrt{2}}}{4}$.

点评 本题考查双曲线的基本性质,考查双曲线离心率的求法,考查计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网