题目内容
计算:
=______.
| lim |
| n→∞ |
| 2n2-n+1 |
| 1+3+…+(2n-1) |
| lim |
| n→∞ |
| 2n2-n+1 |
| 1+3+…+(2n-1) |
=
| lim |
| n→∞ |
| 2n2-n+1 | ||
|
=
| lim |
| n→∞ |
| 2n2-n+1 |
| n2 |
=2.
故答案为:2.
练习册系列答案
相关题目
题目内容
| lim |
| n→∞ |
| 2n2-n+1 |
| 1+3+…+(2n-1) |
| lim |
| n→∞ |
| 2n2-n+1 |
| 1+3+…+(2n-1) |
| lim |
| n→∞ |
| 2n2-n+1 | ||
|
| lim |
| n→∞ |
| 2n2-n+1 |
| n2 |