题目内容

8.已知数列{an}是首项为2018,公比为2018的等比数列,设数列{$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3•…S519=$\frac{1}{520}$.

分析 运用等比数列的通项公式可得an=2018n,n∈N*,运用对数的运算性质和裂项相消求和,可得Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,再由累乘法,计算即可得到所求积.

解答 解:数列{an}是首项为2018,公比为2018的等比数列,
可得an=2018n,n∈N*,
$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$=$\frac{1}{lo{g}_{2018}201{8}^{n}•lo{g}_{2018}201{8}^{n+1}}$
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
则Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
即有则S1•S2•S3•…•S519=$\frac{1}{2}$•$\frac{2}{3}$•$\frac{3}{4}$…$\frac{519}{520}$=$\frac{1}{520}$.
故答案为:$\frac{1}{520}$.

点评 本题考查等比数列的通项公式,以及数列的求和:裂项相消求和,对数的运算性质和累乘法,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网