题目内容
已知α∈(0,
),sin(α+
)=
,则cosα的值为 .
| π |
| 2 |
| π |
| 3 |
| 3 |
| 5 |
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:由题意可得角的范围,可得cos(α+
),而cosα=cos[(α+
)-
]=
cos(α+
)+
sin(α+
),代值计算可得.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
解答:
解:∵α∈(0,
),sin(α+
)=
,
又∵
<
<
,∴α+
∈(
,
)
∴cos(α+
)=-
=-
∴cosα=cos[(α+
)-
]=
cos(α+
)+
sin(α+
)
=
×(-
)+
×
=
故答案为:
| π |
| 2 |
| π |
| 3 |
| 3 |
| 5 |
又∵
| 1 |
| 2 |
| 3 |
| 5 |
| ||
| 2 |
| π |
| 3 |
| 3π |
| 4 |
| 5π |
| 6 |
∴cos(α+
| π |
| 3 |
1-sin2(α+
|
| 4 |
| 5 |
∴cosα=cos[(α+
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
=
| 1 |
| 2 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
3
| ||
| 10 |
故答案为:
3
| ||
| 10 |
点评:本题考查两角和与差的余弦函数,涉及同角三角函数的基本关系和角的范围的确定,属中档题.
练习册系列答案
相关题目