题目内容
20.已知函数f(x)=$\frac{1}{3}$x3+$\frac{4}{3}$.求过点P(2,4)的函数f(x)的切线方程.分析 求出原函数的导函数,设出切点坐标,得到过切点的切线方程,再把P点坐标代入求得切点横坐标,代入切线方程得答案.
解答 解:由f(x)=$\frac{1}{3}$x3+$\frac{4}{3}$,得f′(x)=x2,
设切点为(${x}_{0},\frac{1}{3}{{x}_{0}}^{3}+\frac{4}{3}$),则f′(x0)=${{x}_{0}}^{2}$,
∴过切点的切线方程为$y-\frac{1}{3}{{x}_{0}}^{3}-\frac{4}{3}={{x}_{0}}^{2}(x-{x}_{0})$,
把P(2,4)代入得:$4-\frac{1}{3}{{x}_{0}}^{3}-\frac{4}{3}=2{{x}_{0}}^{2}-{{x}_{0}}^{3}$,
整理得:${{x}_{0}}^{3}-3{{x}_{0}}^{2}+4=0$,即${{x}_{0}}^{3}+{{x}_{0}}^{2}-4({{x}_{0}}^{2}-1)=0$,
∴(x0+1)$({x}_{0}-2)^{2}=0$,解得:x0=-1或x0=2.
当x0=-1时,切线方程为x-y+2=0;当x0=2时,切线方程为4x-y-4=0.
∴切线方程为:x-y+2=0,4x-y-4=0.
点评 本题考查利用导数研究过某点的切线方程,关键是注意过某点和在某点处的区别,是中档题.
练习册系列答案
相关题目
15.已知函数f(x)=|2x-1|+|x-2a|,若?x∈[1,2],f(x)≤4,则实a的取值范围是( )
| A. | ($\frac{1}{4}$,$\frac{3}{2}$] | B. | [$\frac{1}{2}$,$\frac{3}{2}$] | C. | [1,$\frac{3}{2}$] | D. | [$\frac{1}{2}$,2] |
5.在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一张卡片,则两数之和等于6的概率为( )
| A. | $\frac{5}{36}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{12}$ |
2.设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},Q1={x|x2+x+b>0},Q2={x|x2+2x+b>0},其中a,b∈R,下列说法正确的是( )
| A. | 对任意a,P1是P2的子集,对任意b,Q1不是Q2的子集 | |
| B. | 对任意a,P1是P2的子集,存在b,使得Q1是Q2的子集 | |
| C. | 存在a,P1不是P2的子集,对任意b,Q1不是Q2的子集 | |
| D. | 存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集 |