题目内容

11.向量$\overrightarrow{a}$,$\overrightarrow{b}$所在的直线分别是l1,l2
(1)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,试探讨l1与l2的关系;
(2)试探讨(1)的逆命题是否成立.

分析 (1)将条件两边平方,化简可得$\overrightarrow{a}$•$\overrightarrow{b}$=0,可得直线l1与l2垂直;
(2)(1)的逆命题:若直线l1⊥l2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,也成立.由向量垂直的条件和完全平方公式,即可得到结论.

解答 解:(1)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,
即为($\overrightarrow{a}$+$\overrightarrow{b}$)2=($\overrightarrow{a}$-$\overrightarrow{b}$)2
即$\overrightarrow{a}$2+$\overrightarrow{b}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$2+$\overrightarrow{b}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$,
即有$\overrightarrow{a}$•$\overrightarrow{b}$=0,
则$\overrightarrow{a}$⊥$\overrightarrow{b}$,
即有直线l1与l2垂直;
(2)(1)的逆命题:若直线l1⊥l2
则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,也成立.
由直线l1⊥l2,可得$\overrightarrow{a}$⊥$\overrightarrow{b}$,
即$\overrightarrow{a}$•$\overrightarrow{b}$=0,即有$\overrightarrow{a}$2+$\overrightarrow{b}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$2+$\overrightarrow{b}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$,
则($\overrightarrow{a}$+$\overrightarrow{b}$)2=($\overrightarrow{a}$-$\overrightarrow{b}$)2
即有|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|.

点评 本题考查向量的数量积的性质,考查向量垂直的条件:数量积为0,向量的平方即为模的平方.考查推理能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网