题目内容
19.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 求出直线l的普通方程为:x+y-2=0,曲线C的普通方程为y=(x-2)2,联立方程组,得A(2,0),B(1,1),由此能求出|AB|.
解答 解:∵直线l的参数方程为$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s为参数),
∴消去参数s,得直线l的普通方程为:x+y-2=0,
∵曲线C的参数方程为$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$(t为参数),
∴曲线C消去参数t,得曲线C的普通方程为y=(x-2)2,
联立$\left\{\begin{array}{l}{x+y-2=0}\\{y=(x-2)^{2}}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
∴A(2,0),B(1,1),
∴|AB|=$\sqrt{(2-1)^{2}+(0-1)^{2}}$=$\sqrt{2}$.
故选:A.
点评 本题考查弦长的求法,考查参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
14.函数y=tan($\frac{π}{4}$-x)的定义域是( )
| A. | {x|x≠$\frac{π}{4}$} | B. | {x|x≠$\frac{π}{4}$,k∈Z} | C. | {x|x≠kπ+$\frac{π}{4}$,k∈Z} | D. | {x|x≠$\frac{3π}{4}$+kπ,k∈Z} |
4.设y=f(x)为定义在R上的可导函数,定义运算⊕和?如下:对任意m,n∈R均有m⊕n=|f(m)|•n;m?n=f'(m)+n.若存在a∈R,使得对于任意x∈R,恒有a⊕x=a?x=x成立,则称实数a为函数的基元,则下列函数中恰有两个基元的是( )
| A. | f(x)=x2+1 | B. | $f(x)=\frac{1}{2}({x^3}-3x)$ | C. | f(x)=2x3+3x2 | D. | f(x)=cosx |
8.已知曲线C满足方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{2t-1}}\end{array}\right.$(t为参数),则曲线C上点的横坐标的取值范围是( )
| A. | R | B. | [0,+∞) | C. | [1,+∞) | D. | [$\frac{1}{2}$,+∞) |