ÌâÄ¿ÄÚÈÝ
8£®Ä³¸ßм¼Êõ¹«Ë¾ÒªÉú²úÒ»ÅúÐÂÑз¢µÄA¿îÊÖ»úºÍB¿îÊÖ»ú£¬Éú²úһ̨A¿îÊÖ»úÐèÒª¼×²ÄÁÏ3kg£¬ÒÒ²ÄÁÏ1kg£¬²¢ÇÒÐèÒª»¨·Ñ1Ììʱ¼ä£¬Éú²úһ̨B¿îÊÖ»úÐèÒª¼×²ÄÁÏ1kg£¬ÒÒ²ÄÁÏ3kg£¬Ò²ÐèÒª1Ììʱ¼ä£¬ÒÑÖªÉú²úһ̨A¿îÊÖ»úÀûÈóÊÇ1000Ôª£¬Éú²úһ̨B¿îÊÖ»úµÄÀûÈóÊÇ2000Ôª£¬¹«Ë¾Ä¿Ç°Óмס¢ÒÒ²ÄÁϸ÷£¬ÔòÔÚ300kg²»³¬¹ý120ÌìµÄÇé¿öÏ£¬¹«Ë¾Éú²úÁ½¿îÊÖ»úµÄ×î´óÀûÈóÊÇ210000Ôª£®·ÖÎö ÉèÉú²úA¿îÊÖ»úx̨£¬B¿îÊÖ»úy̨£¬ÀûÈó×ܺÍΪz£¬µÃ³öÔ¼ÊøÌõ¼þ±íʾµÄ¿ÉÐÐÓò£¬¸ù¾Ý¿ÉÐÐÓòµÃ³öÄ¿±êº¯ÊýÈ¡µÃ×î´óֵʱµÄ×îÓŽ⣮
½â´ð
½â£ºÉèÉú²úA¿îÊÖ»úx̨£¬B¿îÊÖ»úy̨£¬ÀûÈó×ܺÍΪz£¬
Ôò$\left\{\begin{array}{l}{3x+y¡Ü300}\\{x+3y¡Ü300}\\{x+y¡Ü120}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬Ä¿±êº¯Êýz=1000x+2000y£¬
×ö³ö¿ÉÐÐÓòÈçͼËùʾ£º
½«z=1000x+2000±äÐΣ¬µÃy=-$\frac{1}{2}$x+$\frac{z}{2000}$£¬
ÓÉͼÏó¿ÉÖª£¬µ±Ö±Ïß¾¹ýµãMʱ£¬zÈ¡µÃ×î´óÖµ£®
½â·½³Ì×é$\left\{\begin{array}{l}{x+3y=300}\\{x+y=120}\end{array}\right.$£¬µÃMµÄ×ø±êΪ£¨30£¬90£©£®
ËùÒÔµ±x=30£¬y=90ʱ£¬zmax=1000¡Á30+2000¡Á90=210000£®
¹ÊÉú²ú²úÆ·A¡¢²úÆ·BµÄÀûÈóÖ®ºÍµÄ×î´óֵΪ210000Ôª£®
µãÆÀ ±¾Ì⿼²éÁ˼òµ¥µÄÏßÐԹ滮µÄÓ¦Óã¬×ö³öÔ¼ÊøÌõ¼þ£¬¸ù¾Ý¿ÉÐÐÓòÅжÏ×îÓŽâµÄλÖÃÊǹؼü£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Èñ½ÇÈý½ÇÐÎABCµÄÈý±ß³¤a£¬b£¬c³ÉµÈ²îÊýÁУ¬ÇÒa2+b2+c2=21£¬ÔòʵÊýbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $£¨{\sqrt{6}£¬\sqrt{7}}]$ | B£® | $£¨{0£¬\sqrt{7}}]$ | C£® | $£¨{\frac{{2\sqrt{42}}}{5}£¬\sqrt{7}}]$ | D£® | £¨6£¬7] |
19£®ÊýÁÐ{an}ÖУ¬Èô´æÔÚak£¬Ê¹µÃ¡°ak£¾ak-1ÇÒak£¾ak+1¡±³ÉÁ¢£¨ÆäÖÐk¡Ý2£¬k¡ÊN*£©£¬akÔò³ÆÎª{an}µÄÒ»¸öHÖµ£®ÏÖÓÐÈçÏÂÊýÁУº
¢Ùan=1-2n
¢Úan=sinn
¢Ûan=$\frac{n-2}{{e}^{n-3}}$
¢Üan=lnn-n
Ôò´æÔÚHÖµµÄÊýÁеÄÐòºÅΪ£¨¡¡¡¡£©
¢Ùan=1-2n
¢Úan=sinn
¢Ûan=$\frac{n-2}{{e}^{n-3}}$
¢Üan=lnn-n
Ôò´æÔÚHÖµµÄÊýÁеÄÐòºÅΪ£¨¡¡¡¡£©
| A£® | ¢Ù¢Ú | B£® | ¢Ú¢Û | C£® | ¢Ù¢Ü | D£® | ¢Û¢Ü |
16£®${log_2}8+{log_2}\frac{1}{2}$=£¨¡¡¡¡£©
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
3£®ÒԵ㣨2£¬-1£©ÎªÔ²ÐÄÇÒÓëÖ±Ïß3x-4y+5=0ÏàÇеÄÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©
| A£® | £¨x-2£©2+£¨y+1£©2=3 | B£® | £¨x+2£©2+£¨y-1£©2=3 | C£® | £¨x-2£©2+£¨y+1£©2=9 | D£® | £¨x+2£©2+£¨y-1£©2=9 |