题目内容
10.已知定义在R上的函数f(x)满足f(x+1)=$\frac{1}{f(x)}$,且当x∈[0,1]时,f(x)=2x,则f(7.5)=$\frac{\sqrt{2}}{2}$.分析 f(x+1)=$\frac{1}{f(x)}$,得到函数的周期为,利用函数的周期性进行转化求解即可.
解答 解:由f(x+1)=$\frac{1}{f(x)}$,得f(x+2)=$\frac{1}{f(x+1)}$=f(x),即函数的周期是2的周期函数,
则f(7.5)=f(8-0.5)=f(-0.5)=$\frac{1}{f(-0.5+1)}$=$\frac{1}{f(0.5)}$,
∵当x∈[0,1]时,f(x)=2x,
∴f(0.5)=20.5=${2}^{\frac{1}{2}}=\sqrt{2}$,
则f(7.5)=$\frac{1}{f(0.5)}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题主要考查函数值的计算,根据条件判断函数的周期性是解决本题的关键.
练习册系列答案
相关题目
15.已知点P(sinθ-cosθ,sinθ+tanθ)在第一象限,则在[0,2π]内θ的取值范围是( )
| A. | ($\frac{π}{2}$,$\frac{3π}{4}$)∪(π,$\frac{5π}{4}$) | B. | ($\frac{π}{4},\frac{π}{2}$)∪(π,$\frac{5π}{4}$) | C. | ($\frac{π}{2}$,$\frac{3π}{4}$)∪($\frac{5π}{4},\frac{3π}{2}$) | D. | ($\frac{π}{4},\frac{π}{2}$)∪($\frac{3π}{4},π$) |
19.已知α∈(π,2π),tanα=$\frac{1}{2}$,则sinα+cosα等于( )
| A. | -$\frac{3}{5}$$\sqrt{5}$ | B. | $-\frac{2}{5}\sqrt{5}$ | C. | $\frac{3}{5}\sqrt{5}$ | D. | $-\frac{\sqrt{5}}{5}$ |
20.直线l与椭圆4x2+y2=4交于P,Q两点,若OP⊥OQ,则l在两坐标轴上的截距乘积最小值为( )
| A. | $\frac{5}{6}$ | B. | $\frac{8}{5}$ | C. | 2 | D. | $\frac{12}{5}$ |