ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãSn=2an-n£¬n¡ÊN*£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖÐÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}Âú×ãbn=log2£¨an+1£©£¨n¡ÊN*£©£¬ÔÚbkÓëbk+1Ö®¼ä²åÈë2k-1£¨k¡ÊN*£©¸ö2£¬µÃµ½Ò»¸öеÄÊýÁÐ{cn}£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖÐÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}Âú×ãbn=log2£¨an+1£©£¨n¡ÊN*£©£¬ÔÚbkÓëbk+1Ö®¼ä²åÈë2k-1£¨k¡ÊN*£©¸ö2£¬µÃµ½Ò»¸öеÄÊýÁÐ{cn}£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©ÔÚÊýÁеÝÍÆÊ½ÖÐÈ¡n=n+1µÃµ½ÁíÒ»µÝÍÆÊ½£¬×÷²îºó±äÐεõ½
=2£¬¼´ËµÃ÷ÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©Ö±½ÓÓÉÊýÁÐ{an+1}ΪµÈ±ÈÊýÁÐд³öÆäͨÏʽ£¬Ôò¿ÉµÃµ½ÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©°ÑÊýÁÐ{an}µÄͨÏʽ´úÈëbn=log2£¨an+1£©£¬µÃµ½ÊýÁÐ{bn}µÄͨÏʽ£¬ÓÉÌâÒâÇóµÃÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍ£¬È»ºóÇó³öʹµÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013µÄmÖµ£®
| an+1+1 |
| an+1 |
£¨¢ò£©Ö±½ÓÓÉÊýÁÐ{an+1}ΪµÈ±ÈÊýÁÐд³öÆäͨÏʽ£¬Ôò¿ÉµÃµ½ÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©°ÑÊýÁÐ{an}µÄͨÏʽ´úÈëbn=log2£¨an+1£©£¬µÃµ½ÊýÁÐ{bn}µÄͨÏʽ£¬ÓÉÌâÒâÇóµÃÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍ£¬È»ºóÇó³öʹµÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013µÄmÖµ£®
½â´ð£º
£¨¢ñ£©Ö¤Ã÷£ºÓÉSn=2an-n£¬µÃSn+1=2an+1-£¨n+1£©£¬
¡àan+1=2an+1-2an-1£¬an+1=2an+1£¬
Ôòan+1+1=2£¨an+1£©£¬
¡à
=2£®
ÓÖµ±n=1ʱ£¬S1=2a1-1£¬µÃa1=1£¬a1+1=2£®
¡àÊýÁÐ{an+1}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ»
£¨¢ò£©½â£ºÓÉ£¨¢ñ£©µÃan+1=£¨a1+1£©2n-1=2n£¬¹Êan=2n-1£®
£¨¢ó£©½â£ºÓÉ£¨¢ò£©µÃbn=log22n£¬¼´bn=n£¨n¡ÊN*£©£®
ÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+3+¡+k£©+£¨20+21+22+¡+2k-2£©2=
+2k-2£®
µ±k=10ʱ£¬ÆäºÍÊÇ55+210-2=1077£¼2013£®
µ±k=11ʱ£¬ÆäºÍÊÇ66+211-2=2112£¾2013£®
ÓÖ¡ß2013-1077=936=468¡Á2£¬ÊÇ2µÄ±¶Êý£¬
¡àµ±m=10+£¨1+2+22+¡+28£©+468=989ʱ£¬Tm=2013£®
¡à´æÔÚm=989£¬Ê¹µÃTm=2013£®
¡àan+1=2an+1-2an-1£¬an+1=2an+1£¬
Ôòan+1+1=2£¨an+1£©£¬
¡à
| an+1+1 |
| an+1 |
ÓÖµ±n=1ʱ£¬S1=2a1-1£¬µÃa1=1£¬a1+1=2£®
¡àÊýÁÐ{an+1}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ»
£¨¢ò£©½â£ºÓÉ£¨¢ñ£©µÃan+1=£¨a1+1£©2n-1=2n£¬¹Êan=2n-1£®
£¨¢ó£©½â£ºÓÉ£¨¢ò£©µÃbn=log22n£¬¼´bn=n£¨n¡ÊN*£©£®
ÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+3+¡+k£©+£¨20+21+22+¡+2k-2£©2=
| k(k+1) |
| 2 |
µ±k=10ʱ£¬ÆäºÍÊÇ55+210-2=1077£¼2013£®
µ±k=11ʱ£¬ÆäºÍÊÇ66+211-2=2112£¾2013£®
ÓÖ¡ß2013-1077=936=468¡Á2£¬ÊÇ2µÄ±¶Êý£¬
¡àµ±m=10+£¨1+2+22+¡+28£©+468=989ʱ£¬Tm=2013£®
¡à´æÔÚm=989£¬Ê¹µÃTm=2013£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬¶ÔÓÚ£¨¢ó£©µÄÀí½âÊǽâ´ð´ËÌâµÄ¹Ø¼ü£¬ÊôÖиߵµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªlog2a+log2b¡Ý1£¬Ôò3a+9bµÄ×îСֵΪ£¨¡¡¡¡£©
| A¡¢6 | B¡¢9 | C¡¢16 | D¡¢18 |