题目内容
1.(1)若θ=$\frac{π}{4}$,求△ABC的周长(结果精确到0.01米);
(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积△ABC的面积尽可能大,问当θ为何值时,该活动室面积最大?并求出最大面积.
分析 (1)在△ABC中,由正弦定理可得AC,BC,即可求△ABC的周长;
(2)利用余弦定理列出关系式,将c,cosC的值代入并利用基本不等式求出ab的最大值,利用三角形的面积公式求出面积的最大值,以及此时θ的值.
解答 解:(1)在△ABC中,由正弦定理可得AC=$\frac{6•\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=2$\sqrt{6}$,BC=$\frac{6sin75°}{\frac{\sqrt{3}}{2}}$=3$\sqrt{2}$+$\sqrt{6}$,
∴△ABC的周长为6+3$\sqrt{2}$+3$\sqrt{6}$≈17.60米
(2)在△ABC中,由余弦定理:c2=602=a2+b2-2abcos60°,
∴a2+b2-ab=36,
∴36+ab=a2+b2≥2ab,即ab≤36,
∴S△ABC=$\frac{1}{2}$AC•BC•sin$\frac{π}{3}$=$\frac{\sqrt{3}}{4}$ab≤9$\sqrt{3}$,
此时a=b,△ABC为等边三角形,
∴θ=60°,(S△ABC)max=9$\sqrt{3}$.
点评 此题考查了正弦定理、余弦定理,基本不等式的应用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
12.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 数学 | 108 | 103 | 137 | 112 | 128 | 120 | 132 |
| 物理 | 74 | 71 | 88 | 76 | 84 | 81 | 86 |
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)