题目内容
12.已知直线x-y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若$\overrightarrow{OM}•\overrightarrow{ON}=3$,则圆的半径r=$\sqrt{6}$.分析 本题可以利用方程组得到交点间的坐标关系,然后将向量条件坐标化,得到关于半径的方程,求出半径的值.
解答 解:设M(x1,y1),N(x2,y2),
由直线x-y+3=0与圆O:x2+y2=r2(r>0)联立,
得:2x2+6x+9-r2=0,
∴x1+x2=-3,x1x2=$\frac{1}{2}$(9-r2).
∴y1y2=$\frac{1}{2}$(9-r2).
∵$\overrightarrow{OM}•\overrightarrow{ON}=3$,∴$\frac{1}{2}$(9-r2)+$\frac{1}{2}$(9-r2)=3,
∴r=$\sqrt{6}$.
故答案为:$\sqrt{6}$.
点评 本题考查了函数方程思想和向量积的坐标运算,计算有一定难度,属于中档题.
练习册系列答案
相关题目
4.圆O:x2+y2-2x-7=0与直线l:(λ+1)x-y+1-λ=0(λ∈R)的位置关系是( )
| A. | 相切 | B. | 相交 | C. | 相离 | D. | 不确定 |
1.下列说法中:
①平行于同一直线的两个平面平行;
②平行于同一平面的两个不同平面平行;
③垂直于同一直线的两条直线平行;
④垂直于同一平面的两条不重合直线平行;
其中正确的说法个数为( )
①平行于同一直线的两个平面平行;
②平行于同一平面的两个不同平面平行;
③垂直于同一直线的两条直线平行;
④垂直于同一平面的两条不重合直线平行;
其中正确的说法个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,P为椭圆上一点,连接PF1交y轴于点Q,若△PQF2为等边三角形,则椭圆C的离心率为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为( )
| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{13}}{3}$ |