题目内容

在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形(如图):

则第七个三角形数是
 
考点:归纳推理
专题:
分析:原来三角形数是从l开始的连续自然数的和.l是第一个三角形数,3是第二个三角形数,6是第三个三角形数,10是第四个三角形数,15是第五个三角形数…那么,第七个三角形数就是:l+2+3+4+5+6+7=28.
解答: 解:原来三角形数是从l开始的连续自然数的和.
l是第一个三角形数,
3是第二个三角形数,
6是第三个三角形数,
10是第四个三角形数,
15是第五个三角形数,

那么,第七个三角形数就是:l+2+3+4+5+6+7=28.
故答案为:28.
点评:本题考查数列在生产实际中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,易出错,是高考的重点.解题时要认真审题,注意总结规律.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网