题目内容

14.已知在(1+x)3+(1十x)4+…+(1+x)n(n∈N*)的展开式中.
(1)求含x2项的系数;
(2)利用${C}_{n}^{2}$=$\frac{n(n-1)}{2}$,求12+22+32+…+n2

分析 (1)由条件利用二项式系数的性质求得结果.
(2)由题意求得n2=2${C}_{n}^{2}$+n,把要求的式子化为1+2(${C}_{2}^{2}$+${C}_{3}^{2}$+${C}_{4}^{2}$+…+${C}_{n}^{2}$ )+(2+3+…+n),再利用二项式系数的性质、等差数列的求和公式,计算求得结果.

解答 解:(1)在(1+x)3+(1十x)4+…+(1+x)n(n∈N*)的展开式中,
含x2项的系数为${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{n}^{2}$=2+${C}_{3}^{3}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{n}^{2}$=2+${C}_{n+1}^{3}$=2+$\frac{(n+1)•n•(n-1)}{6}$.
(2)${C}_{n}^{2}$=$\frac{n(n-1)}{2}$=$\frac{{n}^{2}}{2}$-$\frac{n}{2}$,∴n2=2${C}_{n}^{2}$+n,
∴12+22+32+…+n2=1+2(${C}_{2}^{2}$+${C}_{3}^{2}$+${C}_{4}^{2}$+…+${C}_{n}^{2}$ )+(2+3+…+n)
=1+2${C}_{n+1}^{3}$+$\frac{(n-1)(n+2)}{2}$=1+2•$\frac{(n+1)•n•(n-1)}{6}$+$\frac{(n-1)(n+2)}{2}$=$\frac{n(n+1)(2n+1)}{6}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、组合数的计算公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网