题目内容

函数f(x)=Asin(ax+φ)(A>0,ω>0,|φ|<
π
2
),图象的一个最高点为(
π
3
,2),图象两条相邻的对称轴之间的距离为
π
2

(1)求函数的解析式;
(2)设α∈[0,π],f(
α
2
)=1,求α的值.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的求值
分析:解:(1)依题意得A=2,T=π,ω=2,又图象的一个最高点为(
π
3
,2),由
3
+φ=2kπ+
π
2
(k∈Z),可求得:φ=2kπ-
π
6
(k∈Z),又|φ|<
π
2
,可求得φ=-
π
6
,于是可得其解析式;
(2)α∈[0,π]⇒(α-
π
6
)∈[-
π
6
6
];依题意,可得sin(α-
π
6
)=
1
2
,于是可求得α的值.
解答: 解:(1)依题意得A=2,T=π,ω=2,又图象的一个最高点为(
π
3
,2),
∴2sin(
3
+φ)=2,
3
+φ=2kπ+
π
2
(k∈Z),解得:φ=2kπ-
π
6
(k∈Z),又|φ|<
π
2

∴φ=-
π
6

∴f(x)=2sin(2x-
π
6
);
(2)∵α∈[0,π],∴(α-
π
6
)∈[-
π
6
6
];
∵f(
α
2
)=2sin(α-
π
6
)=1,
∴sin(α-
π
6
)=
1
2

∴α-
π
6
=
π
6
6
,解得α=
π
3
或α=π.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查正弦函数的单调性与闭区间上的最值,考查运算求解能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网