题目内容
18.已知函数f(x)=|a-3x|-|2+x|.(1)若a=2,解不等式f(x)≤3;
(2)若存在实数x,使得不等式f(x)≥1-a+2|2+x|成立,求实数a的取值范围.
分析 (1)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;
(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于a,即可解出实数a的取值范围.
解答 解:(1)a=2时:f(x)=|3x-2|-|x+2|≤3,
$\left\{\begin{array}{l}{x≥\frac{2}{3}}\\{3x-2-x-2≤3}\end{array}\right.$或$\left\{\begin{array}{l}{-2<x<\frac{2}{3}}\\{2-3x-x-2≤3}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-2}\\{2-3x+x+2≤3}\end{array}\right.$,
解得:-$\frac{3}{4}$≤x≤$\frac{7}{2}$;
(2)不等式f(x)≥1-a+2|2+x|成立,
即|3x-a|-|3x+6|≥1-a,
由绝对值不等式的性质可得||3x-a|-|3x+6||≤|(3x-a)-(3x+6)|=|a+6|,
即有f(x)的最大值为|a+6|,
∴$\left\{\begin{array}{l}{1-a≥0}\\{{(a+6)}^{2}{≥(1-a)}^{2}}\end{array}\right.$或$\left\{\begin{array}{l}{1-a<0}\\{a+6≥0}\end{array}\right.$,
解得:a≥-$\frac{5}{2}$.
点评 本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误.
| 1 | 2 | 3 | 4 | 5 | |
| 男生 | 1 | 4 | 3 | 2 | 2 |
| 女生 | 0 | 1 | 3 | 3 | 1 |
(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X,求随机变量X的分布列和数学期望;
(Ⅲ)试判断男学生阅读名著本数的方差${s_1}^2$与女学生阅读名著本数的方差${s_2}^2$的大小(只需写出结论).
| A. | sinx2<sin($\frac{5}{2}$-y) | B. | sinx2>sin(2-y) | C. | sin(2-x2)<siny | D. | sinx2<cos(y-1) |