题目内容
4.若复数z满足|z|=3,且z的实部为1,则z的虚部为( )| A. | 2$\sqrt{2}$i | B. | 2$\sqrt{2}$ | C. | ±2$\sqrt{2}$i | D. | ±2$\sqrt{2}$ |
分析 设出z=1+mi(m∈R),由|z|=3列式求解m的值得答案.
解答 解:设z=1+mi(m∈R),
由|z|=$\sqrt{{m}^{2}+1}$=3,解得:m=±$2\sqrt{2}$.
∴复数z的虚部为±$2\sqrt{2}$.
故选:D.
点评 本题考查了复数的代数表示法及其几何意义,考查了复数模的求法,是基础题.
练习册系列答案
相关题目
12.已知|x+2|+|6-x|≥k恒成立
(1)求实数k的最大值;
(2)若实数k的最大值为n,正数a,b满足$\frac{8}{5a+b}+\frac{2}{2a+3b}=n$,求7a+4b的最小值.
(1)求实数k的最大值;
(2)若实数k的最大值为n,正数a,b满足$\frac{8}{5a+b}+\frac{2}{2a+3b}=n$,求7a+4b的最小值.
19.小明同学计划两次购买同一种笔芯(两次笔芯的单价不同),有两种方案:第一种方法是每次购买笔芯数量一定:第二种方法是每次购买笔芯所花钱数一定.则哪种购买方式比较经济( )
| A. | 第一种 | B. | 第二种 | C. | 两种一样 | D. | 无法判断 |
9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要不充分条件,则实数a的取值范围是( )
| A. | (-∞,0)∪($\frac{1}{2}$,+∞) | B. | (-∞,0]∪[$\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | [0,$\frac{1}{2}$] |
13.已知i为虚数单位,复数z满足$3z+\overline z=\frac{4}{1-i}$,则z=( )
| A. | $\frac{1}{4}+\frac{1}{2}i$ | B. | $\frac{1}{2}+i$ | C. | $\frac{1}{4}-\frac{1}{2}i$ | D. | $\frac{1}{2}-i$ |