题目内容

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆的右准线.
(1)若椭圆C的离心率为
1
2
,直线l:x=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰好过原点,求椭圆C的离心率.
考点:椭圆的简单性质,椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:(1)由e=
1
2
,右准线l的方程为x=4,建立方程组,求得几何量,从而可求椭圆的方程;
(2)根据题意,可得A,M,P三点共线,MQ⊥PQ,由此可得几何量之间的关系,从而可求离心率.
解答: 解:(1)由题意:
c
a
=
1
2
a2
c
=4,
∴c=1,a=2,b=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1

((2)设M(x,y),P(
a2
c
,β),
∵A,M,P三点共线,
y
x+a
=
β
a2
c
+a

∴β=
y(
a2
c
+a)
x+a
,…(9分)
由MP为圆的直径,故OP⊥BM,
即-1=kOPkBM=
cy(
a2
c
+a)
a2 (x+a)
y
x-a
=
y2(a+c)
a (x2-a2)
=
b2(a+c)
-a3
=
(a2-c2)(a+c)
-a3

∴c2+ac-a2=0
∴e2+e-1=0,
解得e=
5
-1
2
.…(16分)
点评:本题考查椭圆的几何性质与标准方程,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网