题目内容
14.已知全集为R,且集合A={x|log2(x+1)<2},$B=\{x|\frac{x-2}{x-1}≥0\}$,则A∩(∁RB)等于( )| A. | (-1,1) | B. | (-1,1] | C. | [1,2) | D. | [1,2] |
分析 解log2(x+1)<2即可求出集合A,而解不等式$\frac{x-2}{x-1}≥0$即可求出集合B,然后进行交集和补集的运算即可求出A∩(∁RB).
解答 解:由log2(x+1)<2得,log2(x+1)<log24;
∴0<x+1<4;
解得-1<x<3;
∴A=(-1,3);
解$\frac{x-2}{x-1}≥0$得,x<1,或x≥2;
∴B=(-∞,1)∪[2,+∞);
∴∁RB=[1,2);
∴A∩(∁RB)=[1,2).
故选C.
点评 考查描述法表示集合的概念及形式,对数函数的单调性,以及分式不等式的解法,交集和补集的运算.
练习册系列答案
相关题目
5.某单位为制定节能减排的计划,随机统计了某4天的用电量y(单位:度)与当天气温x(单位:°C),并制作了对照表(如表),由表中数据,得线性回归方程$\hat y=-2x+a$,当某天的气温为-5°C时,预测当天的用电量约为( )
| x | 18 | 13 | 10 | -1 |
| y | 24 | 34 | 38 | 64 |
| A. | 65度 | B. | 68度 | C. | 70度 | D. | 72度 |
9.已知等比数列{an}的前n项和为Sn,a1+a3=30,S4=120,设bn=1+log3an,那么数列{bn}的前15项和为( )
| A. | 152 | B. | 135 | C. | 80 | D. | 16 |
4.
持续性的雾霾天气严重威胁着人们的身体健康,汽车排放的尾气是造成雾霾天气的重要因素之一.为了贯彻落实国务院关于培育战略性新兴产业和加强节能减排工作的部署和要求,中央财政安排专项资金支持开展私人购买新能源汽车补贴试点.2017年国家又出台了调整新能源汽车推广应用财政补贴的新政策,其中新能源乘用车推广应用补贴标准如表:
某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.
(1)请根据频率分布直方图统计这20辆纯电动乘用车的平均续驶里程;
(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).
某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.
| 纯电动续驶里程R(公里) | 100≤R<150 | 150≤R<250 | R>250 |
| 补贴标准(万元/辆) | 2 | 3.6 | 44 |
(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).