题目内容
已知变量x,y满足
,则x+2y的最小值是( )
|
| A、6 | B、5 | C、3 | D、2 |
考点:简单线性规划
专题:不等式的解法及应用
分析:画出足约束条件
的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出x+2y的最小值.
|
解答:
解:已知实数x、y满足
,
在坐标系中画出可行域,如图中阴影三角形,
三个顶点分别是A(1,1),B(1,2),C(2,2),
由图可知,当x=1,y=1时,
x+2y的最大值是3.
故选:C.
|
在坐标系中画出可行域,如图中阴影三角形,
三个顶点分别是A(1,1),B(1,2),C(2,2),
由图可知,当x=1,y=1时,
x+2y的最大值是3.
故选:C.
点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关题目
已知向量
=(λ,2),
=(1,-2),
⊥
,则实数λ=( )
| a |
| b |
| a |
| b |
| A、1 | B、4 | C、-1 | D、-4 |
掷一枚质地均匀的骰子,则掷得点数为1的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )
| A、分支型循环 | B、直到型循环 |
| C、条件型循环 | D、当型循环 |
若loga3<loga2(a>0且a≠1),则关于t的不等式a2t+1<a3-2t<1的解集为( )
A、{t|t<
| ||||
B、{t|
| ||||
C、{t|-
| ||||
D、{t|t>
|
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )
| A、假设三内角都不大于60度 |
| B、假设三内角至多有一个大于60度 |
| C、假设三内角都大于60度 |
| D、假设三内角至多有两个大于60度 |