题目内容
已知数列{an}的前n项和Sn=3n+1.
(1)求通项公式an;
(2)若bn=
n•an,求数列{bn•an}的前n项和.
(1)求通项公式an;
(2)若bn=
| 1 |
| 2 |
考点:数列的求和,数列的函数特性
专题:等差数列与等比数列
分析:(1)由已知得a1=S1=32=9,当n≥2时,an=Sn-Sn-1=3n+1-3n=2•3n.由此能求出an=
.
(2)bn=
n•an=
,由此能求出数列{bn•an}的前n项和.
|
(2)bn=
| 1 |
| 2 |
|
解答:
解:(1)∵数列{an}的前n项和Sn=3n+1,
∴a1=S1=32=9,
当n≥2时,an=Sn-Sn-1=3n+1-3n=2•3n.
当n=1时,2•3n=6≠a1,
∴an=
.
(2)bn=
n•an=
,
∴bn•an=
,
设数列{bn•an}的前n项和为Sn,
n=1时,Sn=
;
n≥2时,Sn=
+4•92+6•93+…+2n•9n,①
9Sn=
+4•93+6•94+…+2n•9n+1.②
①-②,得-8Sn=-
+182+2(92+93+…+n)-2n•9n+1
=-142+2×
-2n•9n+1
=-142+
-
-2n•9n+1.
∴Sn=
+
-
+
=
-
+
.
∴Sn=
.
∴a1=S1=32=9,
当n≥2时,an=Sn-Sn-1=3n+1-3n=2•3n.
当n=1时,2•3n=6≠a1,
∴an=
|
(2)bn=
| 1 |
| 2 |
|
∴bn•an=
|
设数列{bn•an}的前n项和为Sn,
n=1时,Sn=
| 81 |
| 2 |
n≥2时,Sn=
| 81 |
| 2 |
9Sn=
| 729 |
| 2 |
①-②,得-8Sn=-
| 648 |
| 2 |
=-142+2×
| 81(1-9n-1) |
| 1-9 |
=-142+
| 9n-1 |
| 4 |
| 81 |
| 4 |
∴Sn=
| 71 |
| 4 |
| 81 |
| 32 |
| 9n-1 |
| 32 |
| 2n•9n+1 |
| 8 |
| n•9n+1 |
| 4 |
| 9n-1 |
| 32 |
| 649 |
| 32 |
∴Sn=
|
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目