题目内容
12.己知非单调数列{an}是公比为q的等比数列,且a1=-$\frac{1}{4}$,a2=16a4,记bn=$\frac{5{a}_{n}}{1-{a}_{n}}$.(I)求{an}的通项公式;
(Ⅱ)若对任意正整数n,|m-1|≥3bn都成立,求实数m的取值范围;
(Ⅲ)设数列{b2n},{b2n-1}的前n项和分别为Sn,Tn.证明:对任意的正整数n,都有2Sn<2Tn+3.
分析 (Ⅰ)由a2=16a4,结合数列是非单调数列求出等比数列的公比,可得等比数列的通项公式;
(Ⅱ)由bn=$\frac{5{a}_{n}}{1-{a}_{n}}$,得${b}_{n}=\frac{5}{\frac{1}{{a}_{n}}-1}=\frac{5}{(-4)^{n}-1}$,分n为奇偶数求出{bn}的最大值,代入|m-1|≥3bn,解得m≥2或m≤0;
(Ⅲ)${b}_{2n}-{b}_{2n-1}=\frac{5}{{4}^{2n}-1}+\frac{5}{{4}^{2n-1}+1}$放缩得到${b}_{2n}-{b}_{2n-1}<\frac{25}{1{6}^{n}}$,代入Sn-Tn=(b2-b1)+(b4-b3)+…+(b2n-b2n-1)可得2Sn-2Tn<3,即2Sn<2Tn+3.
解答 (Ⅰ)解:∵数列{an}是公比为q的等比数列,且a1=-$\frac{1}{4}$,a2=16a4,
∴${q}^{2}=\frac{{a}_{4}}{{a}_{2}}=\frac{1}{16}$,解得q=$±\frac{1}{4}$,
∵数列是非单调数列,∴q=-$\frac{1}{4}$,
则${a}_{n}=(-\frac{1}{4})^{n}$;
(Ⅱ)解:由bn=$\frac{5{a}_{n}}{1-{a}_{n}}$,得${b}_{n}=\frac{5}{\frac{1}{{a}_{n}}-1}=\frac{5}{(-4)^{n}-1}$,
当n为奇数时,${b}_{n}=\frac{5}{-{4}^{n}-1}<0$;
当n为偶数时,${b}_{n}=\frac{5}{{4}^{n}-1}>0$,且{bn}为减函数,
∴$\{{b}_{n}{\}}_{max}={b}_{2}=\frac{1}{3}$,则|m-1|≥3bn=1,解得m≥2或m≤0;
(Ⅲ)证明:∵${b}_{2n}-{b}_{2n-1}=\frac{5}{{4}^{2n}-1}+\frac{5}{{4}^{2n-1}+1}$=$\frac{5({4}^{2n-1}+{4}^{2n})}{({4}^{2n}-1)({4}^{2n-1}+1)}$
=$\frac{5({4}^{2n-1}+{4}^{2n})}{{4}^{4n-1}+{4}^{2n}-{4}^{2n-1}-1}$$<\frac{5({4}^{2n-1}+{4}^{2n})}{{4}^{4n-1}}$=$\frac{25}{{4}^{2n}}=\frac{25}{1{6}^{n}}$,
∴Sn-Tn=(b2-b1)+(b4-b3)+…+(b2n-b2n-1)
$<\frac{5}{15}+\frac{5}{5}+25(\frac{1}{1{6}^{2}}+\frac{1}{1{6}^{3}}+…+\frac{1}{1{6}^{n}})$=$\frac{4}{3}+\frac{5}{48}(1-\frac{1}{1{6}^{n}})<\frac{4}{3}+\frac{5}{48}=\frac{69}{48}<\frac{3}{2}$.
∴2Sn-2Tn<3,即2Sn<2Tn+3.
点评 本题考查数列递推式,考查了数列的前n项和,训练了放缩法证明数列不等式,属有一定难度题目.
| A. | f(x)是奇函数 | B. | f(x)在R上单调递增 | C. | f(x)的值域为R | D. | f(x)是周期函数 |
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |