ÌâÄ¿ÄÚÈÝ
4£®ÉèF£¨a£¬b£©=$\left\{\begin{array}{l}{2a-2b£¬a¡Ýb}\\{2b-2a£¬a£¼b}\end{array}\right.$£¬ÓйØF£¨a£¬b£©ÓÐÒÔÏÂËĸöÃüÌ⣺¢Ù?a0£¬b0¡ÊR£¬Ê¹µÃF£¨a0£¬b0£©£¼0£»
¢ÚÈôa£¬b£¬c¡ÊR£¬ÔòF£¨a£¬b£©+F£¨b£¬c£©¡ÝF£¨c£¬a£©£»
¢Û²»µÈʽF£¨x£¬2£©¡ÜF£¨1-x£¬1£©µÄ½â¼¯ÊÇ[1£¬+¡Þ£©£»
¢ÜÈô¶ÔÈÎÒâʵÊýx£¬m[F£¨x£¬-2£©+F£¨x£¬2£©]£¾2m+6ºã³ÉÁ¢£¬ÔòmµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®
ÔòËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ú¢Û£®
·ÖÎö º¯Êýʵ¼ÊΪa-bµÄ¾ø¶ÔÖµµÄ2±¶£¬¸ù¾Ý¾ø¶ÔÖµ¶¨ÀíºÍÐÔÖʽøÐÐÅжϼ´¿É£»¢ÜÓÃÁ˺ã³ÉÁ¢ÎÊÌâµÄת»»£¬Ö»ÐèÇó³ö×ó²àµÄ×îСֵ¼´¿É£®
½â´ð ½â£ºF£¨a£¬b£©=$\left\{\begin{array}{l}{2a-2b£¬a¡Ýb}\\{2b-2a£¬a£¼b}\end{array}\right.$£¬
¡àF£¨a£¬b£©¡Ý0£¬¹Ê¢Ù´íÎó£»
¢Ú¸ù¾Ý¾ø¶ÔÖµ²»µÈʽ¶¨Àí¿ÉÖªÕýÈ·£»
¢Û¸ù¾Ý¾ø¶ÔÖµ²»µÈʽµÄÐÔÖÊ¿Éת»¯Îª£¨x-2£©2¡Üx2£¬½âµÃ£º½â¼¯ÊÇ[1£¬+¡Þ£©£¬¹ÊÕýÈ·£»
¢Ü¸ù¾Ý¾ø¶ÔÖµ²»µÈʽ¶¨Àí¿ÉµÃ4£¾$\frac{2m+6}{2m}$£¬½âµÃmµÄȡֵ·¶Î§ÊÇ£¨1£¬+¡Þ£©£¬¹Ê´íÎó£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®
µãÆÀ ¿¼²éÁ˳éÏóº¯ÊýºÍ¾ø¶ÔÖµº¯ÊýµÄÐÔÖÊ£¬ºã³ÉÁ¢ÎÊÌâµÄת»»ÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®º¯Êý$f£¨x£©=sin£¨{¦Øx+\frac{¦Ð}{6}}£©£¨{¦Ø£¾0}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä¿ÉÒÔÊÇ£¨¡¡¡¡£©
| A£® | $£¨{-\frac{¦Ð}{3}£¬\frac{¦Ð}{6}}£©$ | B£® | $£¨{-\frac{¦Ð}{12}£¬\frac{5¦Ð}{12}}£©$ | C£® | $£¨{\frac{5¦Ð}{12}£¬\frac{11¦Ð}{12}}£©$ | D£® | $£¨{\frac{¦Ð}{6}£¬\frac{2¦Ð}{3}}£©$ |
15£®Èç¹ûÒ»¸öº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòDÖÐÂú×㣺£¨1£©ÈÎÒâx1£¬x2¡ÊD£¬f£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©¡Ü$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£»£¨2£©´æÔÚx1£¬x2¡ÊD£¬ÇÒx1¡Ùx2£¬Ê¹µÃf£¨x1£©=f£¨x2£©£¬Ôòf£¨x£©¿ÉÒÔÊÇ£¨¡¡¡¡£©
| A£® | f£¨x£©=x2+2x | B£® | f£¨x£©=cosx | C£® | f£¨x£©=2x-1 | D£® | f£¨x£©=$\frac{1}{2}$£¨ex-e-x£© |
19£®ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa2013=3S2012+2014£¬a2012=3S2011+2014£¬Ôò¹«±ÈqµÈÓÚ£¨¡¡¡¡£©
| A£® | 4 | B£® | 1»ò4 | C£® | 2 | D£® | 1»ò2 |
13£®É躯Êýf£¨x£©=sinx+|sinx|£¬Ôòf£¨x£©Îª£¨¡¡¡¡£©
| A£® | ÖÜÆÚº¯Êý£¬×îСÕýÖÜÆÚΪ¦Ð | B£® | ÖÜÆÚº¯Êý£¬×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$ | ||
| C£® | ÖÜÆÚº¯Êý£¬×îСÕýÖÜÆÚΪ2¦Ð | D£® | ·ÇÖÜÆÚº¯Êý |
1£®
Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß»³öµÄÊÇij¶àÃæÌåµÄÈýÊÓͼ£¬Ôò¸Ã¶àÃæÌåµÄ¸÷ÌõÀâÖУ¬×µÄÀâµÄ³¤¶ÈΪ£¨¡¡¡¡£©
| A£® | $2\sqrt{3}$ | B£® | $2\sqrt{2}$ | C£® | $\sqrt{10}$ | D£® | $\sqrt{13}$ |