题目内容

14.在三棱锥S-ABC内任取一点P,使得VP-ABC>$\frac{1}{2}$VS-ABC的概率是$\frac{1}{8}$.

分析 取高线的中点,过该点作平行于底的平面,根据条件关系得到P满足的条件,根据概率为小棱锥与原棱锥体积之比,用相似比计算即可.

解答 解:作出S在底面△ABC的射影为O,
若VP-ABC=$\frac{1}{2}$VS-ABC,则高OP=$\frac{1}{2}$SO,
即此时P在三棱锥VS-ABC的中垂面DEF上,
则VP-ABC>$\frac{1}{2}$VS-ABC的点P位于小三棱锥VS-EDF内,
则对应的概率P=($\frac{1}{2}$)3=$\frac{1}{8}$,
故答案为:$\frac{1}{8}$.

点评 本题主要考查几何概型的概率计算,求出对应的体积关系是解决本题的关键,根据比例关系,得到面积之比是相似比的平方,体积之比是相似比的立方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网