题目内容
,若与的夹角为锐角,则x的范围是____________。
_
函数的图象恒过定点,若点在直线上,其中,则的最小值为 .
已知函数是R上的偶函数,其图像关于点对称,且在区间上是单调函数,求的值。
已知正方体棱长1,顶点A、B、C、D在半球的底面内,顶点A1、B1、C1、D1在半球球面上,则此半球的体积是 .
如右图(1)所示,定义在区间上的函数,如果满
足:对,常数A,都有成立,则称函数
在区间上有下界,其中称为函数的下界. (提示:图(1)、
(2)中的常数、可以是正数,也可以是负数或零)
(
Ⅰ)试判断函数在上是否有下界?并说明理由;
(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.
请你类比函数有下界的定义,给出函数在区间上
有上界的定义,并判断(Ⅰ)中的函数在上是否
有上界?并说明理由;
(Ⅲ)若函数在区间上既有上界又有下界,则称函数
在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是(、是常数)上的有
界函数?
函数图象是将函数的图象经过怎样的平移而得_ _。
已知均在椭圆上,直线、分别过椭圆的左右焦点、,当时,有.
(I)求椭圆的方程;
(II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.
在中,分别是的对边长,已知.
(Ⅰ)若,求实数的值;
(Ⅱ)若,求面积的最大值.
如图,某住宅小区的平面图呈圆心角为的扇形AOB,小区的两个出入口设置在点A及点C处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)